
Generalizing Reuse Patterns for Efficient DNN on
Microcontrollers

Jiesong Liu
North Carolina State University
Raleigh, North Carolina, USA

jliu93@ncsu.edu

Bin Ren
William & Mary

Williamsburg, Virginia, USA
bren@wm.edu

Xipeng Shen
North Carolina State University
Raleigh, North Carolina, USA

xshen5@ncsu.edu

Abstract
Deep Neural Networks (DNNs) face challenges in deploy-
ment on resource-constrained devices due to their high com-
putational demands. Leveraging redundancy in input data
and activation maps for computation reuse is an effective
way to accelerate DNN inference, especially for microcon-
trollers where the computing power is very limited. This
work points out an important limitation in current reuse-
based DNN optimizations, the narrow definition of reuse
patterns in data. It proposes the concept of generalized reuse
and uncovers the relations between generalized reuse pat-
terns and row/column reorder of amatrix view of the input or
activation map of a DNN. It revolutionizes the conventional
view of explorable reuse patterns, drastically expanding the
reuse space. It further develops two novel analytical models
for analyzing the impacts of reuse patterns on the accuracy
and latency of DNNs, enabling efficient selection of appro-
priate reuse patterns. Experiments show that generalized
reuse consistently brings significant benefits, regardless of
the differences among DNNs or microcontroller hardware. It
delivers 1.03-2.2× speedups or 1-8% accuracy improvement
over conventional reuse.

CCS Concepts: • Computer systems organization →
Approximate computing; Real-time systems; • Soft-
ware and its engineering → Compilers; • Computing
methodologies → Neural networks.

Keywords: real-time machine learning, compiler optimiza-
tion
ACM Reference Format:
Jiesong Liu, Bin Ren, and Xipeng Shen. 2025. Generalizing Reuse
Patterns for Efficient DNN on Microcontrollers. In Proceedings of
the 30th ACM International Conference on Architectural Support for

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ASPLOS ’25, Rotterdam, Netherlands
© 2025 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-1079-7/2025/03
https://doi.org/10.1145/3676641.3716257

Programming Languages and Operating Systems, Volume 2 (ASPLOS
’25), March 30-April 3, 2025, Rotterdam, Netherlands.ACM, New York,
NY, USA, 16 pages. https://doi.org/10.1145/3676641.3716257

1 Introduction
Recent years have witnessed an increasing interest in run-
ning computer visionDNNs onmicrocontrollers (MCU), such
as smart cameras and devices used in smart manufacturing.
DNNs are computationally intensive. Efficient DNNs infer-
ences on MCU are especially challenging, due to the limited
space and computing power on those devices [14, 35, 36, 57].
Removing redundancies is an important way to speed up
DNN inference [12, 15, 20, 26, 56, 70, 71].
Extensive studies have been conducted to exploit the re-

dundancy among DNN parameters. Examples include model
compression techniques [6, 19, 22, 47] such as quantiza-
tion [60], filter size reduction [12], feature compression [50].
Those techniques, however, are oblivious to the redun-

dancy in the input data. Redundancy is ubiquitous in real-
world data. As illustrated in Figure 1, multiple tiles in a chan-
nel of an image may be similar to one another. Reuse [17, 37,
41, 42, 55] is a promising way to leverage the redundancy for
speedups. It exploits similar tiles (which form so-called neu-
ron vectors[42] in a matrix view of the input) within an image
or activation map (i.e., the outputs of a neural network layer).
By detecting data redundancies of the input data and activa-
tion maps through online clustering, reuse methods elimi-
nate the data redundancy by reusing the computation results
for similar tiles. Reuse-based DNN optimizations are general
and beneficial. Prior work [17] shows that they can eliminate
over 90% of computations for a convolutional layer while
suffering little accuracy loss. (Although reuse can also apply
to fully connected layers and recurrent neural networks, the
discussion in this paper concentrates on convolution for its
pivotal role in computer vision applications.)
All the previous explorations on reuse, however, have

been based on a single, most straightforward pattern. Here, a
reuse pattern refers to the way used to define a neuron vector
in the input image or activation map. Neuron vector is the
unit used by the clustering operation in a reuse-based DNN
inference to identify similar parts for computation reuse. In
existing reuse-based DNN optimizations, a neuron vector
just comprises the values in a flattened tile of pixels in a
channel of an input image or activation map [17, 37, 41, 42].

https://doi.org/10.1145/3676641.3716257
https://doi.org/10.1145/3676641.3716257

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Jiesong Liu, Bin Ren, & Xipeng Shen

Red channel Green channel

Original Image

Redundant
data 1

Redundant
data 2

Figure 1. Illustration of similar tiles in an image in each of
its channels (only two channels are shown).

In this work, we point out that the conventional reuse is
actually a special case of reuse, and that the narrow defi-
nitions of reuse patterns have critically restrained the full
exertion of the power of reuse-based DNN optimizations.

To fully unlock the potential, as the first-fold contribution
of this work, we propose the concept of generalized reuse.
Compared to previous reuse, generalized reuse has several
innovations at the conceptual level:

• First, it provides two novel insights on reuse patterns
and how they relate to the row/column reorder of a
matrix view of the input or activation map.

• Second, based on the two insights, it establishes the
concept of reuse space as a systematic way to charac-
terize various reuse patterns.

• Third, it generalizes the reuse unit from 1-D neuron
vector to 2-D neuron block, and introduces a new reuse
direction (horizontal reuse), which together help sig-
nificantly expand the varieties of reuse patterns.

• Fourth, it characterizes the connections between reuse
patterns and matrix reorder, from which, it derives an
easy way to generate various reuse patterns.

These innovations revolutionize the conventional view
of explorable reuse patterns, drastically expanding reuse
options and hence elevating the potential of reuse-based
DNN optimizations to a new level.
The new potential brings a new challenge: As the ex-

plorable reuse patterns dramatically expand, how to effi-
ciently choose the appropriate reuse pattern to use for a given
problem? For a given input, different reuse patterns could
discover different amounts of similar tiles and hence let reuse
save different amounts of computations and cause different
accuracy losses. The best reuse pattern can differ for differ-
ent inputs. Conventional reuse-based DNN [17, 37, 41, 42]
empirically examines each reuse pattern by retraining the
DNN optimized with the reuse pattern and then checking
the accuracy and latency. DNN training takes time. The enor-
mous reuse space in generalized reuse makes this method
impractical to use. As the second-fold contribution of this
work, we create two novel analytical models for analyzing
the impacts of the generalized reuse patterns, respectively
on the accuracy and the latency of DNN inferences. The

accuracy model leverages the Squared Freobenius norm to
quantify the upper bound of the accuracy loss due to the use
of a reuse pattern. The latency model approximates the time
savings by a reuse pattern through the analysis of the saved
computations and the overhead. The models allow users to
quickly focus on a small set of promising reuse patterns,
who may then use the full empirical measurement to check
the effectiveness of each of the reuse patterns in that set.
By reducing the number of reuse patterns needed for a full
empirical check, the models eliminate the major barrier to
realizing the potential of the generalized reuse.

We evaluate generalized reuse on four popular DNN net-
works, namely CifarNet [29], ZfNet [61], and two variants
of SqueezeNet [23] (with and without bypass). Experiments
on two different MCUs show that generalized reuse con-
sistently brings significant benefits, regardless of the differ-
ences among DNNs or MCU hardware. It helps DNNs avoid
over 96% computations on convolution layers. Compared to
conventional reuse, the generalized reuse brings 1.03-2.2×
speedups with similar accuracy, or 1-8% accuracy increase
with similar latency.

The main contributions of this work are as follows:
• It points out an important limitation on reuse patterns
in prior reuse-based DNN optimizations.

• It proposes the concept of generalized reuse that revo-
lutionizes the conventional view of explorable reuse,
and establishes a reuse space that characterizes a much
broader range of reuse patterns.

• It uncovers the relations between reuse patterns and
row/column reorder of a matrix view of the input or
activation map of a DNN, based on which, it provides
an easy way to generate various reuse patterns.

• It develops two novel analytical models for analyzing
the impacts of reuse patterns on the accuracy and the
latency of DNN inference, enabling efficient selection
of appropriate reuse patterns.

• It empirically evaluates the effectiveness of the new so-
lution on twomodels of MCUs, confirming the substan-
tial benefits of the new solution in enabling efficient
DNN inference.

2 Background
This section provides background on MCUs and locality
sensitive hashing (LSH).

MCU. MCU is an energy-efficient processor used every-
where, from household appliances [44], to cars [49], con-
sumer electronics [54], wearables [53] and so on [3, 4, 25,
28, 51, 59]. An estimated 250 billion microcontrollers are
currently in use [52]. Figure 2 presents an example of an
MCU architecture and its memory hierarchy, specifically the
STM32F469I. As shown in Figure 2 (a), the Cortex-M4 core
architecture features a 32-bit processor (CM4) along with a
minimal set of essential peripherals. The CM4 core follows a

Generalizing Reuse Patterns for Efficient DNN on Microcontrollers ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

Harvard architecture, meaning it employs separate interfaces
for fetching instructions (Inst) and data (Data). This design
enables simultaneous access to instruction and data memory,
preventing CPU stalls due to memory access bottlenecks. A
key distinction between the Cortex-M4 and its predecessor,
the CM3 [11], is the inclusion of single-instruction multiple-
data (SIMD) extensions, which significantly enhance arith-
metic computing performance. From the CM4’s perspective,
all components appear as memory, distinguishing only be-
tween instruction fetches and data accesses.
Figure 2 (b) illustrates the on-chip memory hierarchy,

which is notably constrained in terms of available space.
Microcontrollers generally consist of a central processing
unit (CPU), cached memory for frequently accessed data,
static random-access memory (SRAM), and on-chip flash
memory for storage.

CM4 Core
Inst Data

NVIC
SysTick

Bu
s M

at
rix

Cortex-M4

Interrupts

ICode
DCode
System

On-Chip

Cortex-M
Cache (4KB)

SRAM
(324 KB)

(a) Architecture of Cortex-M4. (b) Memory Hierarchy for MCUs.

eFlash (2 MB)

Figure 2. An illustration of the architecture and memory
hierarchy for microcontrollers.

Microcontrollers are highly energy-efficient, consuming
minimal power (0.166W for the F469I board), and are more
cost-effective than conventional processors such as CPUs
and GPUs [63]. Microcontrollers provide very limited com-
puting resources and a limited volume of storage (324 KB
SRAM and 2 MB on-chip flash memory) that developers
need to take care of. Optimizations to DNN efficiency is
hence essential to the deployment of DNN on microcon-
trollers [2, 13, 18, 30, 39, 44, 69].

Locality Sensitive Hashing (LSH). LSH is an online clus-
tering technique widely used in various solutions, including
our work, to facilitate computation reuse in DNN optimiza-
tions [45]. As defined in Equation 1, a parameter vector v is
used to transform an input vector x into either 1 or 0 via a
hash function ℎv:

ℎv (x) =
{1, 𝑖 𝑓 v · x > 0
0, 𝑖 𝑓 v · x ≤ 0 (1)

When 𝐻 hash functions are applied, each input vector is
mapped to an 𝐻 -bit binary vector. Similar input vectors are
likely to yield identical hash outputs, naturally forming clus-
ters, while the parameter 𝐻 determines the granularity of
clustering.
Each neuron vector is assigned a unique ID based on its

corresponding𝐻 -bit vector. Neuron vectors sharing the same

ID are grouped into clusters, allowing them to reuse the
computed result of the centroid vector instead of perform-
ing redundant individual computations. When LSH is used
in reuse-based DNN, the appropriate hash vectors can be
learned in the DNN training process [17, 37].

3 Generalized Reuse
Real images contain data redundancies. As shown in Figure 1,
several parts in an image are similar in each of its channels.
These redundancies expose reuse opportunities for DNN
acceleration. Originated from Lin and others [42], deep reuse
is a main technique for exploiting the redundancies to reduce
DNN inference computations [17, 37, 41, 42, 55]. This section
first reviews deep reuse and then introduces the concept of
generalized reuse.

3.1 Review of Deep Reuse
Figure 3 illustrates deep reuse in convolution. As the top
of Figure 3 shows, the convolution of a kernel on an input
tile is reformed into the multiplication of two vectors; the
values in an input tile are put into a neuron vector as part
of an input matrix (which is also called im2col matrix), and
the values in a kernel is put into a kernel vector as part of a
weight matrix. The two matrices are represented as X and
W matrices on top of the deep reuse workflow in Figure 3.
Note that a neuron vector can be part of a row in the input
matrix. In Figure 3, each row in X is evenly split into two
neuron vectors. The matrix X is viewed (called sliced) as two
submatrices (blue and yellow in Figure 3).
The deep reuse process comprises four steps. First, each

sub-matrix X𝑖 , 𝑖 = 1, 2, · · · , 𝑚
𝑙
(𝑚 is the row length and 𝑙 is

the neuron vector length), goes through a clustering step. At
a high level, it uses LSH (Sec 2) to do clustering. In either sub-
matrix in Figure 3, the four neuron vectors are grouped into
two clusters (denoted by two different colors). These centroid
vectors in the clusters constitute the centroid matrices Xc

𝑖 .
Second, sinceXc

𝑖 attend to different parts ofW, each centroid
matrix multiplies the corresponding weights to compute the
centroid results, Yc

𝑖 . Third, to compute Y𝑖 from Yc
𝑖 , it recovers

the results of the rest vectors x∗,𝑖 in X𝑖 by duplicating the
centroid result of the particular cluster that x∗,𝑖 belongs to.
Finally, the reuse process produces the final output Y by
adding up Y𝑖 .
We make two notes. (i) Our illustration has been using

input images, but deep reuse can apply to the outputs of each
neural network layer as well, that is, activation maps. (An
activation map can have more than three channels.) (ii) After
the initial proposal of deep reuse, studies have extended it
in various ways. The most recent progress is TREC, which
makes the LSH hash vectors (used in the online clustering
in deep reuse) be automatically learned as part of the DNN
training process [17, 37]. Compared to the use of random

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Jiesong Liu, Bin Ren, & Xipeng Shen

=

sum to get
final output

+

!11

✕
!21
!31
!41

!12
!22
!32
!42

LSH-based
clustering

Hash

!&&'
!(&'

!&('
!(('

✕ =

✕ =

!(&'
!&&'

!&('
!(('

)&&'
)(&'

)&('
)(('

)&&'
)&&'
)&&'
)(&'

)&('
)(('
)(('
)(('

Expand via
duplication

*&' *('

*&'

*('

+1

+2

* , +

*

,1

,2

a b c
d e f
g h i

a b c d e f g h i

Neuron vector

✕x1 x2 x3
y1 y2 y3
z1 z2 z3
Kernel

ax1+bx2+cx3+
dy1+dy2+dy3
+gz1+hz2+iz3

Output
Input
window

x1
x2
x3
y1
y2
y3
z1
z2
z3

,1

,2

Figure 3. An illustration of deep reuse on im2col matrix X.
Each row is divided into several neuron vectors such that
each neuron vector attends to certain parts of the weight
matrix W. The technique clusters neuron vectors in each
submatrix. The resulting matrices are then duplicated to
recover the full results for each submatrix; they are finally
summed up into the final output matrix.

hash vectors in the original deep reuse, TREC achieves signif-
icantly better speed and accuracy1. In the rest of this paper,
unless noted otherwise, deep reuse refers to the TREC version
by default. It is worth noting that the reuse technique is
more useful for convolutional layers than fully connected
layers: The fully connected layers, especially those close
to the output layer, are typically more sensitive to reuse in
terms of the impact to accuracy. A recent study shows that
reuse can be applied to recurrent neural networks [38] as
well.

3.2 Key Insights and Reuse Space of Generalized
Reuse

Deep reuse reduces computations in DNN inference through
reuse, but its definition of the reuse unit is narrow—the neu-
ron vector can only be consecutive elements in a channel,
and the reuse direction is only among the vectors within
a vertical panel in an input matrix2. As a result, the reuse
patterns it can exploit are very limited.

1Random hashing reuse causes huge fluctuations in the model accuracy, e.g.,
0.73 to 0.76 for CifarNet. This significantly defects the model deployment.
2Prior work [42] also explored reuse across input matrices but a neuron
vector is still defined as one tile in a channel of a single image.

Reuse Pattern-1

Image 1 Image 2

Reuse
Pattern-2

Reuse Pattern-3

Figure 4. Reuse patterns.

Besides the reuse patterns that deep reuse can exploit, there
are countless other reuse patterns. Figure 4 illustrates sev-
eral examples. Pattern-1 forms a neuron vector by taking
5 elements in the red channel and 4 elements in the green
channel of an image; pattern-2 uses 4 elements in each chan-
nel; pattern-3 uses 3 elements from the red channel of two
images. Here, patterns 1, 2, and 3 each consist of two tiles;
the two tiles reside in either different channels (as in patterns
1 and 2) or different images (as in pattern 3). In each of these
patterns, the two tiles together form a single reuse unit. By
defining reuse unit in this way, each pattern offers a possible
way to enable efficient reuse by capturing the similarities
across reuse units. Pattern 3, specifically, picks two tiles in
two images together as one reuse unit, which is used to com-
pare to other reuse units formed by other tiles in these two
images. Note that none of those reuse patterns are covered
by existing deep reuse. Moreover, the reuse unit has always
been a 1-D vector in the im2col matrix. Can it be a 2-D block?

In this work, we propose generalized reuse to lifts the limits
and to offer a way to effectively explore the full reuse pattern
space. The proposal is based on two key insights:

• Insight-1: A reuse pattern is determined by three fac-
tors, the definition of reuse unit, the reuse direction,
and the granularity of a neuron vector.

• Insight-2: The various definitions of neuron vectors
in the image view (e.g., Figure 4) of an input or activa-
tion map can be systematically materialized through
row or column reordering on its matrix view (namely,
the matrix after the im2col expansion), with coordi-
nated adjustment to the memory view (the data layout
in the memory). 3 Therefore, reordering on the matrix
view, plus choices in reuse directions and granularities,
produces all possible reuse patterns.

3Simply put, the image view represents data across multiple channels (e.g.,
RGB) in its original size. This data can be transformed into a single matrix
using the im2col operation. The memory view shows how this matrix is
organized and stored in memory.

Generalizing Reuse Patterns for Efficient DNN on Microcontrollers ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

The first insight is straightforward to understand. The
definition of reuse unit and its granularity determine the
tiles used in similarity checking for reuse, and the reuse
direction (detailed in Section 3.4) determines what other tiles
to check against (e.g., tiles on the same row or column). So
together they give a 3-D space, as shown in Figure 5. Every
point in the space is a combination of the three factors and
defines a reuse pattern. We call the space reuse space.

Reuse order (reuse

unit def.)

Re
use
gra
nu
lar
ity

Reuse direction
Reuse
patterns

Figure 5. Illustration of generalized reuse space. Any reuse
pattern is essentially a combination of choices in the three
dimensions: reuse order, reuse direction, and reuse granularity.

The second insight entails that one of the dimensions
of the reuse space, reuse unit definition, can be replaced
with row/column order in the matrix view. It also suggests a
systematic way to generate all the possible reuse patterns.
We next explain the three views involved in the second

insight and the connections between the order and reuse
patterns.

3.3 Generalized Reuse: Three Views and Reordering
Understanding the three views mentioned in Insight-2 and
their relations is the key to understanding how reordering
on the matrix view (i.e., im2col view) can generate various
neuron vectors in the reuse patterns.
There are three views for a given input or activation

map, image view, im2col view, and memory view; changes in
the reuse patterns in the image view prompt corresponding
changes in the other two views. The image view of an input
or activation map of𝐶 channels consists of𝐶 2-D views, with
each holding the values in one channel, as illustrated in Fig-
ure 6 (a). The im2col view is a 2-Dmatrix that encompasses all
the values in all the channels in the image view. The default
mapping between them is shown in Figure 6 (b): One row in
im2col view consists of the values of all the channels in a tile,
laid out channel by channel. The im2col views of multiple
images (called a batch) could be stacked in one im2col matrix.
The memory view is 1-D, showing how the matrix elements
in the im2col view are stored in memory, which is sometimes
also called memory layout. What Figure 6 (c) illustrates is

(a)

Red channel Green channel

(b) r11 r12 r13 r21 r22 r23 r31 r32 r33 g11 g12 g13 g21 g22 g23 g31 g32 g33

r12 r13 r14 r22 r23 r24 r32 r33 r34 g12 g13 g14 g22 g23 g24 g32 g33 g34

… …

… …

(c) r11 r12 … r33 g11 g12 … g33 r12 r13 … r34 g12 g13 … g34 …

image 1

image 2

(d)

r11 g11 r12 g12 r13 g13 r21 g21 r22 g22 r23 g23 r31 g31 r32 g32 r33 g33

r12 g12 r13 g13 r14 g14 r22 g22 r23 g23 r24 g24 r32 g32 r33 g33 r34 g34

… …

… …

image 1

image 2

②

r11 r12 r13 r21 r22 r23 r31 r32 r33 g11 g12 g13 g21 g22 g23 g31 g32 g33

r11 r12 r13 r21 r22 r23 r31 r32 r33 g11 g12 g13 g21 g22 g23 g31 g32 g33

… …

… …

(e)

image 1
image 2
image 1

③

Column
reorder

Row
reorder

①

Figure 6. Example of three views and their mappings. (a)
image view (showing only two channels); (b) im2col view
(default); (c) memory view derived from part b (row major);
(d) im2col view after a column reorder; (e) im2col view after
a row reorder.
row-major, where the elements in the Figure 6 (b) im2col
matrix are laid out row by row in memory; this layout is
often used in CPU memory; column-major is often used in
GPU memory. There are other layouts when matrix tiling is
used.
Before discussing reordering, we note that generalized

reuse expands the definition of a reuse unit from 1-D to 2-D.
In deep reuse, the reuse unit is a neuron vector which must
be a segment in a row in the im2col matrix. In generalized
reuse, the reuse unit is a neuron block which is a 2-D block
of elements in an im2col matrix. The old definition becomes
a special case with one dimension of the block being 1.
Now we can see how reordering on the matrix view (i.e.,

im2col view) generates various neuron blocks. The key ob-
servations are that (i) the mapping from the image view to
the im2col view affects the content of a neuron block, and
(ii) row or column reorder in the im2col matrix changes the
content of a neuron block, and hence the area it maps to in
the image view and hence the reuse pattern. For instance,
Figure 6 (d) is the result of column reorder of the im2col
matrix in Figure 6 (b).

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Jiesong Liu, Bin Ren, & Xipeng Shen

Using numpy API, this column reordering can be achieved
as follows:
b is an im2col matrix as illustrated in Figure 6(b)
b = np.resize(b, batch_size * output_height * output_width,

num_channel * kernel_height * kernel_width)
b = np.reshape(b, batch_size * output_height * output_width,

num_channel, kernel_height * kernel_width)
b = np.moveaxis(b, 1, -1)

The neuron block 1 previously corresponding to a 3x3
tile in the red channel now corresponds to the irregular
pattern (pattern-1) in Figure 4. Pattern-2 in Figure 4 cor-
responds to neuron block 2 in Figure 6 (d). Pattern-3 in
Figure 4 comes from the result of a row reorder as shown in
Figure 6 (e) and its neuron block 3 . The reordering can be
implemented as follows in numpy API:
b is an im2col matrix as illustrated in Figure 6(b)
b = np.resize(b, batch_size * output_height * output_width,

num_channel * kernel_height * kernel_width)
b = np.reshape(b, batch_size, output_height * output_width,

num_channel * kernel_height * kernel_width)
b = np.moveaxis(b, 1, 0)

These examples illustrate only several of countless neuron
block definitions that can be produced through reordering.
Some most intuitive reorders include the permutations of the
channel, kernel height, and kernel width, with or without
tiling. But theoretically speaking, any row or column reorder
can be used.
It is worth noting that the order in the im2col matrix is

orthogonal to memory layout in the sense that an im2col
matrix can be laid out in many ways in memory. But for
better data locality in clustering, it is often beneficial to keep
elements in a neuron block consecutive in memory.

3.4 Reuse Directions
In addition to the systematic ways to define and explore
reuse patterns, generalized reuse features the inclusion of
a new reuse direction. In deep reuse, the reuse direction is
always vertical in the im2col matrix: As Figure 3 illustrates,
a neuron vector is compared against those neuron vectors in
the same vertical panel to find similar ones in the clustering
step. We call that vertical reuse direction.

Generalized reuse introduces a novel horizontal reuse direc-
tion. It compares a neuron vector against those in the same
horizontal panel, and uses distributive property of tensor
linear algebra to save computations.

We explain it using Figure 7. The main idea of horizontal
reuse is that if a and b are similar, then we use

c × (w𝑗 +w𝑘)

to approximate a ×w𝑗 + b ×w𝑘 , where the centroid vector
c = (a + b)/2.

The horizontal reuse has four steps. First, after slicing X ∈
R𝑛×𝑚 into 𝑛

𝑙
vertically concatenated sub-matrices, each sub-

matrix X𝑖 goes through a clustering step. In each sub-matrix

=

Concatenate to
get final output

✕
!11!12

!21!22

!13!14

!23!24

!&&' !&() ✕

!(&' !((' ✕

*&'
*('

*+'
*,'

=

=

✕

✕

Sum Reduce

-&'
!&&' !&('

-('
!(&' !(('

Hash

Reuse for
each sub-

neuron
matrix

LSH-based
clustering

.1

.2

.4

.3

.1
.2 + .3 + .4

.1 + .2 + .3
.4

-1

-2

-&' 0&
' 11

12

- 0 1

- 0

!21!22!23!24

!11!12!13!14

0&
' 0(

'

-(' 0(
'

.1

.2

.4

.3

.1

.2

.4

.3

.1
.2 + .3 + .4

.1 + .2 + .3
.4

Figure 7. An illustration of horizontal reuse on im2col matrix
X. One column consists of two neuron vectors. Colors in
matrix X indicate the similarities among the neuron vectors.
Vectors x12, x13, x14, for instance, are similar and hence fall
into one cluster with the centroid calculated as x𝑐12. Their
outer product with W is replaced with the outer product of
x𝑐12 and w2 + w3 + w4.

in Figure 7, the four sub-neuron vectors are grouped into
two clusters (denoted by two different colors), resulting in
two centroids each. These centroid vectors in the clusters
comprise the centroid matrices Xc

𝑖 . Second, for each X𝑖 , we
sum reduce the weight matrixW according to the clustering
results of x𝑖, 𝑗 and obtain the centroid weight matrixWc

𝑖 . We
then compute Y𝑖 = Xc

𝑖 × Wc
𝑖 . Finally, by concatenating Y𝑖

we get the final output Y.
The introduction of horizontal reuse direction opens up

new possible ways of reuse. Along with the vertical reuse
direction, it enriches reuse patterns in generalized reuse.
Relations between reuse unit definition and reuse

direction.The reuse unit definition and the reuse direction
have a sequential relationship, where the reuse unit must
be defined first, followed by determining the reuse direction
these reuse units are clustered so we can reuse the centroid
results. In the matrix view, a reuse unit definition identifies
what a neuron block in the matrix consists of. By reordering
the columns and rows in the matrix, a reuse unit comprises
elements in different positions in the original matrix. Reuse
direction determines in what direction those reuse units are
compared and clustered (a reuse unit is compared against
those reuse units in the same vertical panel as in Figure 3, or
against those in the same horizontal panel as in Figure 7).

Generalizing Reuse Patterns for Efficient DNN on Microcontrollers ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

3.5 Reuse Granularity
Reuse granularity refers to the size of a neuron vector. In
Figure 6, we have already shown the use of different granu-
larities, which, along with reuse order, causes different reuse
patterns.
One point worth mentioning is after expanding neuron

vector to 2-D neuron block, a new phenomenon appears: As
reuse granularity changes, the importance of an element in
a neuron vector for reuse may also change, and the impor-
tance of different elements may differ. In the neuron vector
2 in Figure 6 (d), for instance, elements 𝑟12 and 𝑔12 both
appear twice; they hence weight more than other elements
in the similarity calculation with other neuron vectors in
clustering.
Overall, the granularity options are largely expanded in

the 2-D case, which further enriches the reuse patterns.

3.6 Problem Formulation of Generalized Reuse
Before introducing the solution for generalized reuse, we first
formally define the generalized reuse pattern optimization
problem (GENERALIZED-REUSE) as follows.

Given: A dataset consisting of a training part 𝑇𝑅𝐴𝐼𝑁 and
a test part 𝑇𝐸𝑆𝑇 ; a DNN model𝑀 ; reuse pattern space 𝑆 .
Objective: Using only 𝑇𝑅𝐴𝐼𝑁 dataset, find the reuse pat-

terns in 𝑆 that lead to the Pareto optimal (w.r.t. the accuracy
and latency of𝑀 on 𝑇𝐸𝑆𝑇).

Theorem 3.1. GENERALIZED-REUSE is NP-hard.

4 Reuse Pattern Selection
For a given input, different reuse patterns could discover
different amounts of similar tiles and hence let reuse save
a different amount of computations. Generalized reuse dra-
matically expands the flexibility in reuse patterns, leading to
more choices in reuse patterns and hence potentially better
reuse and higher speed and/or accuracy for a given input. To
realize the potential, however, it requires an effective way
to determine the best reuse pattern. The issue is challenging
especially for generalized reuse due to the much larger reuse
space it enables. There are in addition some parameters in
the reuse process (e.g., the number of hashing vectors in
LSH) that also needs to be selected, which further exacerbate
the selection difficulty.

Our strategy to address the problem is as follows:
(i) Make the reuse pattern selection for a dataset rather

than each image. Ideally, the reuse pattern selection shall
be done for every input, but it could introduce too much
runtime overhead. In practice, an MCU device often works
in a certain environment and the images it deals with share
some commonalities. So using a set of historical images to
offline find out a reuse pattern generally working well for
those images could allow future images to use the pattern
on the fly. This strategy offers a practical tradeoff.

(ii) Use an analytical-empirical combination to speed up
the selection process. Even for offline reuse pattern selection,
efficiency is critical. The reason is that the reuse space is
huge but empirically checking the effectiveness of a reuse
pattern is slow. To check the effectiveness of a reuse pattern
empirically would require a training process of the DNN
because the appropriate LSH hashing vectors need to be
learned with the DNN training [17]. The conventional reuse-
based DNNs simply rely on empirical checking to examine
every candidate reuse pattern. It is impractical for general
reuse for the much expanded reuse space. A combination
of analytical models and empirical checking may drastically
reduce the number of reuse patterns needed to go through
the empirical checking.
Our solution is based on two novel analytical models we

create, one for getting the bound of the accuracy loss due to
the use of a reuse pattern, the other for approximating the
impact of the reuse pattern on the inference latency of the
DNN. These analytical models use some parameters that are
determined through empirical measurements on the dataset;
but those empirical measurements are lightweight, fast, and
can happen on fast servers rather than slow MCUs. By using
the results from the analytical models, the user can focus on
a small set of promising reuse patterns, and then use the full
empirical measurement to check the effectiveness of each of
the reuse patterns in that set.

We next explain these two models first, and then describe
the combined approach and the entire selection process.

4.1 Analytic Model of the Impact on Accuracy
Reuse is an approximation approach for general matrix mul-
tiplication (GEMM) computation. Let Y be the accurate result
of X×W and Ŷ be the approximated result produced by reuse.
An intuitive thought is that if the difference between Y and
Ŷ is small enough, then the impact of reuse on accuracy can
be negligible.

Squared Frobenius norm (∥ ·∥2
𝐹
) is such ametric to quantify

this error difference between Y and Ŷ. ∥Y − Ŷ∥2
𝐹
is defined

as the squared sum of every element in the matrix Y − Ŷ. We
next compute ∥Y − Ŷ∥2

𝐹
by considering the L2-norm of each

column separately (suppose we use vertical reuse here and a
neuron vector is one row of X).
For a column vector y = X · w in the output matrix Y,

let ŷ be the reuse approximation of y. Now consider each
cluster group X(𝑖) after clustering the neuron vectors in X.
The difference in a position between y and ŷ comes from the
practice of using the centroid vector in place of the original
neuron vector. If we write out this quantity, we can rigor-
ously prove that, for each cluster group, ∥y− ŷ∥2 is𝑚𝑖 times
w⊤Σ(𝑖)w where Σ(𝑖) is the covariance matrix of X(𝑖) and𝑚𝑖

is the size of the cluster group. This value then proves to be
upper bounded by the product of (i) the largest eigenvalue
of the covariance matrix of X(𝑖) , that is, 𝜆 (𝑖)max, (ii)𝑚𝑖 , and (iii)

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Jiesong Liu, Bin Ren, & Xipeng Shen

∥w∥. Summing up the upper bound for each cluster group, in
turn, gives us the approximation error for the whole column.

For a more general case, a neuron vector can be part of the
row of X. In this case, X is sliced into [X1,X2, · · · ,X𝐾] and

W is sliced into


W1
W2
...

W𝐾


. Consider each sub-matrix individ-

ually and we have the final approximation error ∥Y − Ŷ∥2
𝐹

bounded by the squared Frobenius norm of the weight ma-
trix (∥W𝑘 ∥2𝐹), largest eigenvalue of the covariance matrix for
each cluster group, and the size of each cluster group:

∥Y − Ŷ∥2𝐹 ≤
𝐾∑︁
𝑘=1

∥W𝑘 ∥2𝐹
𝑁𝑐𝑘∑︁
𝑖𝑘

𝜆
(𝑖𝑘)
max𝑚𝑖𝑘 .

The upper bound can then be used as an indicator of how
well the reuse pattern can preserve the accuracy of the DNN.
Note that the parameters𝑚𝑖 in the upper bound come from
a lightweight empirical measurement, where, a lightweight
deep reuse is applied on the dataset. The lightweight deep
reuse uses random hashing vectors rather than learned hash-
ing vectors (which require a slow training process) for LSH
clustering, and can run on servers, which help ensure the
high speed of the lightweight checking. (For a more formal
detailed description of the analytical model, see the supple-
mentary materials.)

4.2 Analysis of Impact on Latency
Generalized reuse affects the inference latency in several
aspects: (i) the time needed for im2col to create the corre-
sponding data layout from the input image; (ii) the time to
do clustering; (iii) the time to do the GEMM with the cen-
troids; (iv) the time to reconstruct the output. The dominant
influence of reuse pattern is on the third item because dif-
ferent reuse patterns lead to different number of centroids
and hence the GEMM time. We hence focus our discussion
on this aspect.

The impact is related with a concept called redundancy ra-
tio. By grouping neuron vectors into clusters, the size of the
input matrix is significantly reduced, allowing for lower com-
putational complexity for the subsequent matrix multiplica-
tion. Suppose an input matrix X for GEMM (after im2col)
is 𝑁 by 𝐷in and the weight matrix W is 𝐷in by 𝐷out. The
clustering overhead is an additional matrix multiplication
X𝑖 · Hash for each sub-matrix X𝑖 , where the hashing matrix
is 𝐿 by 𝐻 . Here, 𝐻 is the number of hashing vectors, and
𝐿 is the length of each hashing vector. Let 𝑛𝑐 denote the
total number of centroids after clustering. The number of
required computations is then reduced to 𝑛𝑐 . For each input
image or activation map, the benefits for removing the data
redundancy can thus be measured by a redundancy radio,
i.e., 𝑟𝑡 = 1 − 𝑛𝑐

𝑛
as the reduction of input matrix size. Here,

𝑛 = 𝑁 × 𝐾 is the total number of neuron vectors where 𝐾
is the number of submatrices. In Figure 3 in Section 3.1, for
example, the input matrix X is sliced into two sub-matrices,
and there are in total four centroid vectors so 𝐾 is 2 and 𝑛𝑐
is 4 in this case. We conclude that 𝑟𝑡 indicates the fraction of
redundancy within input images or activation maps. It can
be used as the indicator of how effective a reuse pattern is
in reducing the inference latency.
Similar to the case of the accuracy model, the measure-

ment of 𝑟𝑡 is also through the same lightweight deep reuse
running on servers.
It is worth noting that using this measure, one can an-

alytically tell whether a reuse can indeed save computa-
tions. With the measure, the total floating-point operations
(FLOPs) for a conventional GEMM-based convolution is
𝑁 · 𝐷in · 𝐷out, whereas the total number of FLOPs after
reuse is

(
𝐻
𝐷out

+ 𝑟𝑐
)
· 𝑁 · 𝐷in · 𝐷out. We define 𝑟𝑐 = 1 − 𝑟𝑡

for convenience and simplicity. The 𝐻
𝐷out

overhead comes
from the additional hashing matrix multiplication. There-
fore, in order for the reuse to expedite DNN inference (i.e.,(
𝐻
𝐷out

+ 𝑟𝑐
)
·𝑁 ·𝐷in ·𝐷out < 𝑁 ·𝐷in ·𝐷out), the following key

condition must hold: 𝐻
𝐷out

< 𝑟𝑡 . (As shown in the next sec-
tion, the generalized reuse eliminates 𝑟𝑡 = 96% computations
on average). Note that generalized reuse typically removes
more redundancies and thus brings greater speedups than
TREC with the same level of approximation error as shown
in Section 5.

4.3 Workflow for Reuse Pattern Selection
Figure 8 shows the full workflow of our analytical-empirical
combined approach for reuse pattern selection. Based on the
reuse space generation as described in Section 3, it generates
a set of candidate reuse patterns according to a predefined
scope of reuse patterns. The scope defines the set of reorders,
reuse directions, and reuse granularities to consider. Our
implemented framework has a default scope file that includes
the most common options; that file is reconfigurable by users.
After that, the workflow uses the analytic models to get

the error bounds and computation savings of the candidate
reuse patterns. Based on those results, the pattern selection
component identifies the pareto optimals and puts them into
the set of promising patterns. The workflow then conducts
the full check (including model training and LSH hash vector
learning) on those promising patterns and finally outputs
the best reuse patterns (i.e., the actual pareto optimals for
the dataset).

5 Evaluation
We evaluate generalized reuse on four DNN networks that
were used in the state-of-the-art (SOTA)work on reuse-based
DNN optimizations [37] for direct comparisons. The evalua-
tion is conducted in four folds. We first show the end-to-end

Generalizing Reuse Patterns for Efficient DNN on Microcontrollers ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

Construct
Reuse

Pattern
Space

Reuse Order

Reuse
Direction

Reuse
Granularity

Evaluate Patterns

Input imagesDifferent Reuse Pattern Instances with corresponding Memory Data Layouts

Row Wise Column Wise

Row Order Column Order

Neuron Block Size

New Reuse
Pattern

Analytic Model

Latency Accuracy

Approximation
Error Bounds

Computation
Savings

Best reuse
patternsPattern Selection

Deployment on
Microcontrollers

Training DNN
on Servers

Output
Results

Scope of reuse
patterns

Promising patterns

Figure 8. The workflow of analytical-empirical combined approach to reuse pattern selection.

performance benefits using two metrics, namely, accuracy
and latency. We then provide an ablation study on the ef-
fect of our method. Specifically, we show the single-layer
speedups and accuracy increase compared to the SOTA. We
then analyze the performance impact of different reuse pat-
terns and give insights based on these results. We also vali-
date the efficacy of the analytic model to select the optimal
reuse pattern for the given dataset.

5.1 Experimental Setup
Hardware. To check whether general reuse may consis-
tently give benefits, we use two models of MCU, STM32F469I
and STM32F767ZI, in our experiments. Both have SIMD ex-
tensions. The STM32F469I platform has a Cortex-M4 CPU,
324KB SRAM, and 2048KB Flash as memory storage. The
STM32F767ZI board is more capable. It is equipped with a
Cortex-M7 CPU, 512KB SRAM, and 2048KB Flash; it has a
20% faster clock than STM32F469I and can dual issue load and
ALU instructions. The native DNN libraries CMSIS-NN [33]
are installed on both. DNN training is performed on a server
equipped with a 20-core 3.60GHz Intel Core i7-12700K CPU
with 128GB RAM and an NVIDIA GeForce 4090 GPU with
24 GB memory. PyTorch 2.2.0 is used for training.
DNN Models and Workloads. Our experiments use four
DNNs that were used in the SOTA [37] for direct compar-
isons, namely CifarNet [1], ZfNet [61], and two variants of
SqueezeNet (with and without complex bypass [24]). These
DNNs are popular on MCUs for their compactness and good
accuracy. As in prior work, the public dataset CIFAR-10 [29]
is used for training and evaluation. (Dataset ImageNet would
run out of MCU memory.) All networks are optimized by
SGD. The learning rate starts from 0.001 and decreases by 0.1
at 15-epoch intervals. The training batch size, weight decay,
and momentum are set to 10, 10−4, and 0.95, respectively,
and the maximum number of training iterations is set to 40.

Comparison Counterparts.We compare our method with
the existing state-of-the-art reuse technique “TREC" [17] (de-
noted as SOTA in the rest part of this section). This reuse only
considers the conventional reuse patterns (e.g., neuron vec-
tor defined in a single channel, vertical reuse direction, and
1-D vector-shape reuse granularity). In both SOTA and our
method, the DNNs kernels are implemented with the native
library CMSIS-NN [33] and SIMD instructions (e.g., 16-bit
Multiply-and-Accumulate operations on ARM Cortex-M).
The same common practices are followed in the implemen-
tation in both SOTA and our case: The DNN models are first
transformed to fit MCUs, which includes the typical model
pruning and quantization operations. Fixed-point weights,
which reduce weight size from 32 bits to 8 bits, allow neu-
ral networks to run with minimal accuracy loss and faster
operations on MCUs. This fixed-point format is especially
useful for Cortex-M CPUs without floating-point units. Typ-
ical optimizations (e.g., fusion of the convolution and batch
normalization) are applied in both SOTA and our case. (The
code will be released to the public after the paper is accepted.)
All performance results in our method include the im2col re-
ordering costs. Pattern selection is conducted on the training
set for each layer while the final evaluation is performed on
the testing set. Finding an optimal pattern for each layer sep-
arately and combining them, however, can be sub-optimal as
this is a global optimization problem; the full search space is
the Cartesian product of the pattern spaces for each layer,
which motivates the use of the analytic model (detailed in the
supplementary material) in the pattern selection to quickly
estimate the error bounds and computation savings.

5.2 End-to-End Performance
Figures 9 and 10 report the end-to-end performance. They
show the results of four models using the reuse pattern cho-
sen by our generalized reuse scheme compared to the original

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Jiesong Liu, Bin Ren, & Xipeng Shen

ones in SOTA. For each comparison, we show the models
with a spectrum of accuracy and latency. The benefits of
general reuse are clear.
First, it consistently reduces latency by 1.03–2.2× while

maintaining the same level of accuracy. For instance, for
"SqueezeNet (vanilla)" on STM32F4, when SOTA gets its
highest accuracy (0.84), the latency is 1945ms, while at the
same level of accuracy, our optimized model has a latency
of 953ms, a 2.04× speedup. CifarNet and ZfNet have fewer
convolution layers; the speedups are relatively modest, 1.03-
1.21× at the same accuracy level. Overall, with no loss of
accuracy, our method can achieve 1.03-2.04× speedups com-
pared to SOTA across the two boards. Allowing for a min-
imum accuracy drop (0.005), our method can achieve an
average of 1.2×, 1.5×, 2.0×, and 1.8× speedups for CifarNet,
ZfNet, SqueezeNet (vanilla w/o bypass), and SqueezeNet (w/
bypass), respectively. When looking into individual pairs,
there are evenmore speedups. More specifically, for CifarNet,
ZfNet, SqueezeNet (vanilla w/o bypass), and SqueezeNet (w/
bypass), with a similar accuracy (such as 76.8%, 73%, 84%,
and 84.2%), our method outperforms the SOTA by 1.1×, 1.3×,
2.2×, and 1.7× in terms of latency, respectively.
Second, with a similar latency (such as 200 ms, 1300 ms,

800 ms, and 850 ms), our method improves the accuracy by
1.8%, 8%, 3%, and 1%, respectively compared to the SOTA.

Third, note that STM32F7’s total end-to-end inference time
is less than half of that measured on STM32F4. Unlike the
Cortex-M4, the Cortex-M7 is capable of dual issuing load and
ALU instructions, which enhances its instructions per cycle
(IPC). When this capability is paired with a 20% increase in
clock speed, it results in the STM32F7 being roughly twice
as fast as the STM32F4. The benefits of general reuse are
significant on both MCUs, even more significant on the more
powerful model Cortex-M7.

Fourth, when looking into the effects our methods bring to
different networks, we find the most speedups in SqueezeNet.
This is because there are more computation-intensive convo-
lution layers in SqueezeNet, rendering a larger search space
for reuse patterns. We have a more detailed analysis in the
following section.

5.3 Ablation Study
We conduct an ablation study on the effect of general reuse.
In detail, we investigate three aspects: (1) Performance im-
pact of reuse patterns on single layers, (2) Analysis of the
performance impact of different reuse patterns, and (3) Ef-
fectiveness of the analytic model.

5.3.1 Detailed Single-Layer Performance. Table 1 pro-
vides the single-layer performance benefits. All data are col-
lected on the STM32F469I board. We make the following
observations. First, choosing the optimal reuse pattern in-
creases the model accuracy and, at the same time, brings
speedups compared to the conventional reuse. For instance,

100

200

300

0.73 0.74 0.75 0.76 0.77 0.78

La
te
nc
y
(m
s) SOTA

Ours

CifarNet

1000

1200

1400

1600

0.58 0.63 0.68 0.73 0.78 0.83

SOTA
Ours

ZfNet

0

400

800

1200

1600

2000

2400

0.78 0.8 0.82 0.84 0.86

La
te
nc
y
(m
s)

Accuracy

SOTA
Ours

SqueezeNet
(vanilla)

0

400

800

1200

1600

2000

0.79 0.8 0.81 0.82 0.83 0.84 0.85 0.86
Accuracy

SOTA
Ours

SqueezeNet
(bypass)

Figure 9. End-to-end results for different networks on
STM32F4.

80

100

120

0.73 0.74 0.75 0.76 0.77 0.78
La
te
nc
y
(m
s) SOTA

Ours

CifarNet

400

800

1200

0.55 0.6 0.65 0.7 0.75 0.8 0.85

SOTA
Ours

ZfNet

0

400

800

1200

0.78 0.8 0.82 0.84 0.86

La
te
nc
y
(m
s)

Accuracy

SOTA
Ours

SqueezeNet
(vanilla)

0

400

800

1200

0.79 0.8 0.81 0.82 0.83 0.84 0.85
Accuracy

SOTA
Ours

SqueezeNet
(bypass)

Figure 10. End-to-end results for different networks on
STM32F7.

SqueezeNet achieves a 0.63% accuracy increase with over 2×
speedups on average.

Second, when looking into the numbers, we see different
speedups on different convolution layers. For SqueezeNet,
for instance, Fire2 ’s activation map is larger than that of
Fire6. That entails a larger room for better reuse patterns to
exert their effects for Fire2, thus its greater speedups than
that of Fire6.

Other findings include that a larger 𝐿 value typically leads
to a greater speedup. This is because, if 𝐿 is larger, there are
more variants of general reuse patterns to explore, and thus
are more likely to include one with high accuracy and low
latency. We also observe that vertical reuse gives the best
results more often (over 80% time) than horizontal reuse.

5.3.2 Analysis of Different Reuse Patterns. In Figure 11
and Figure 12, we compare the details of the influence of
different reuse patterns on different layers. Figure 11 shows
the implication of reuse order on the model performance for
CifarNet. The channel-last (i.e., the pattern similar to that in
Figure 6 (b)) reuse pattern is better on Conv1, meaning more
reuse opportunities are present within a channel on Conv1.
For Conv2, however, channel-first reuse (i.e., the pattern

Generalizing Reuse Patterns for Efficient DNN on Microcontrollers ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

Table 1. Single-layer performance benefits. 𝐶𝑜𝑛𝑓 . means
configuration, 𝐿 is sub-matrix size, 𝐻 is the number of hash
functions, and𝐷 is the reuse direction (M-1 for vertical reuse
and M-2 for horizontal reuse). 𝐾 is the kernel size and𝑀 is
the number of kernel channels. 𝑟𝑡 represents the redundancy
ratio, and Δ𝑅(%) is the accuracy regret savings by choosing
an optimal reuse pattern compared to the conventional reuse.
Here, accuracy regret is defined as the difference between
the accuracy we achieve with reuse and the original accuracy
without reuse. ΔAcc is the difference between our method’s
accuracy and that of the SOTA.

(a) Single-layer performance of CifarNet.

ConvLayer 𝐾 𝑀
Conf.

𝑟𝑡
Speedup

(vs. CMSIS-NN)
Speedup
(vs. Reuse) Δ𝑅 (%)

𝐿 𝐻 𝐷

Conv1 75 64
15 4 M-2 0.691 1.31× 0.81× 55.7
15 6 M-1 0.948 1.61× 1.00× 52.4
20 3 M-2 0.976 1.96× 1.22× 46.9

Conv2 1600 64
20 3 M-1 0.886 1.43× 1.02× 40.5
32 3 M-1 0.862 1.59× 1.14× 37.3
20 1 M-1 0.960 2.03× 1.45× -14.3

Avg. 0.887 1.66× 1.11× 36.4

(b) Single-layer performance of ZfNet.

ConvLayer 𝐾 𝑀
Conf.

𝑟𝑡
Speedup
(vs. Reuse)

ΔAcc
(vs. Reuse)

𝐿 𝐻 𝐷

Conv1 147 96 21 10 M-1 0.999 4.38× 0.0358
Conv2 2400 256 300 5 M-1 0.997 1.30× 0.0252

Avg. 0.998 2.84× 0.0305

(c) Single-layer performance of SqueezeNet.

ConvLayer 𝐾 𝑀
Conf.

𝑟𝑡
Speedup
(vs. Reuse)

ΔAcc
(vs. Reuse)

𝐿 𝐻 𝐷

Fire2.expand_3x3.conv 144 64
24 2 M-1 0.995 2.77× 0.0139
24 2 M-1 0.998 3.38× 0.013
32 1 M-1 0.998 4.16× 0.0058

Fire3.expand_3x3.conv 144 64
20 5 M-1 0.976 1.02× 0.0094
24 5 M-2 0.996 3.24× 0.0063
24 5 M-1 0.999 5.34× 0.0025

Fire4.expand_3x3.conv 32 128
144 3 M-2 0.993 2.04× 0.0054
144 1 M-2 0.999 2.65× 0.0045
144 5 M-1 0.999 2.92× 0.0021

Fire5.expand_3x3.conv 288 128
32 2 M-1 0.998 1.05× 0.0039
40 2 M-1 0.998 1.15× 0.0015
50 2 M-1 0.999 1.31× 0.0012

Fire6.expand_3x3.conv 48 192
25 4 M-1 0.990 1.31× 0.0067
25 3 M-1 0.995 1.42× 0.006
25 2 M-1 0.998 1.74× 0.0065

Fire7.expand_3x3.conv 432 192
25 3 M-1 0.976 1.33× 0.011
25 2 M-1 0.996 1.44× 0.0108
25 1 M-1 0.998 1.76× 0.0103

Fire8.expand_3x3.conv 64 256
24 5 M-1 0.995 2.18x 0.0046
32 5 M-1 0.996 2.64x 0.0044
144 5 M-2 0.998 2.68x 0.0035

Avg. 0.995 2.06× 0.0063

similar to that in Figure 6 (d)) can exploit more reuse oppor-
tunities and thus have better accuracy and latency results.
This makes sense because the accuracy of reuse depends on
the approximation error (the extent to which the centroid
neuron matrix is similar to the original neuron matrix). For
the original image, a channel expresses the image in R (or
G, B) value; for a pixel, different channels represent differ-
ent features of that position so it is better to explore reuse
opportunities within a channel. After one convolution, the
activation map becomes a more general representation of
the original image, and the preferred reuse pattern is to view
a position with all its channels.

0

40

80

120

0.69 0.71 0.73 0.75 0.77

La
te

nc
y

(m
s)

Accuracy

Pattern C1
Pattern C2

Conv1

0

40

80

120

0.69 0.71 0.73 0.75 0.77 0.79
Accuracy

Pattern C1
Pattern C2

Conv2

Figure 11. Experimental results of changing the reuse order
(C1: channel last and C2: channel first) on CifarNet Conv1
and Conv2. The channel-last reuse pattern is better on Conv1
while the channel-first reuse pattern is better on Conv2.

Likewise, different layers have their own preferences for
reuse direction in CifarNet (see Figure 12). Vertical reuse
patterns show consistently better accuracy and latency on
Conv2 than horizontal reuse patterns do. For Conv1, how-
ever, horizontal reuse patterns sometimes perform better.

0

40

80

120

0.69 0.71 0.73 0.75 0.77 0.79

La
te

nc
y

(m
s)

Accuracy

Pattern M1
Pattern M2

Conv1

0

40

80

120

0.69 0.71 0.73 0.75 0.77 0.79
Accuracy

Pattern M1
Pattern M2

Conv2

Figure 12. Experimental results of changing the reuse direc-
tion (M1: vertical reuse andM2: horizontal reuse) on CifarNet
Conv1 and Conv2. Vertical reuse pattern is better on Conv2
while horizontal reuse pattern sometimes is better on Conv1.

Figure 13 provides results of five reuse patterns on Ci-
farNet Conv1, illustrating how choosing different patterns
influences the performance of a convolution layer. These
results indicate that applying optimal reuse patterns can
optimize both accuracy and latency. Users may select the
desirable reuse patterns that best fit the requirements based
on the Pareto optimal for different accuracy and latency
requirements.

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Jiesong Liu, Bin Ren, & Xipeng Shen

0

20

40

60

80

100

120

0.69 0.7 0.71 0.72 0.73 0.74 0.75 0.76 0.77 0.78

La
te

nc
y

(m
s)

Accuracy

SOTA
Pattern 1
Pattern 2
Pattern 3
Pattern 4

Conv1

Figure 13. Experimental results of optimal reuse pattern on
CifarNet Conv1.

5.3.3 Effectiveness of the Analytic Model. As shown
in Section 3.6, solving the reuse pattern problem is NP-hard.
Finding the theoretical optimal pattern in the vast reuse
space remains an open problem. We hence resort to an em-
pirical search space that contains 25 candidate reuse patterns,
and enumerate each to obtain the upper bound to examine
the room left if our reuse pattern selection method is used.

Figure 14 demonstrates the efficacy of our analytic models
for choosing the best reuse patterns. Figure 14 compares the
accuracy of our approach and those of two other strategies,
as well as the empirical upper bound. Given a set of patterns,
top-𝑘 accuracy refers to the highest accuracy from the 𝑘 pat-
terns we choose by using either our approach or the other
two baseline methods. These two methods include random
search, and one that uses redundancy ratio as heuristic indi-
cation of the potential quality of a reuse pattern and hence
the possible degrees of accuracy loss if that reuse pattern is
used. The analytic model needs much fewer trials (a smaller
𝑘) than the random strategy or heuristic method to obtain
the best accuracy.

0.75

0.76

0.77

0.78

0.79

1 3 5 7 9 11 13 15 17 19 21 23 25

To
p-
kA
cc
ur
ac
y

k

Ours
Heuristic
Random

Empirical
upper bound

Figure 14. Experimental results of choosing optimal reuse
pattern by the analytic model and random strategy; tested
on CifarNet Conv2. For a given set of 25 reuse patterns, the
figure shows the best accuracy we can achieve if we choose 𝑘
patterns using our analytic model (blue), based on heuristics
(grey), or randomly (orange).

5.3.4 Time Breakdown of the Exploration Process. Ta-
ble 2 shows the time breakdown of the exploration process
of our analytical-empirical approach and its comparison to
the standard full-fledged exploration. Consider 100 potential
reuse patterns on SqueezeNet. Our approach first uses light-
weight profiling to get parameters such as𝑚𝑖 for each reuse
pattern. We then use the analytic model to prune the space
so the number of remaining patterns is reduced to 20. From
that, we train those models on the server and, finally, run the
models on the MCU device to measure the latency. The time
breakdown of these four steps is detailed in Table 2. Com-
pared to the standard exploration, that is, training models
using all the potential patterns and measuring their latency,
we manage to save 80% of the exploration time.

Table 2. Breakdown of the exploration process.

Our Method Standard

Profiling 700 s —
Prune <1 s —
Training 20×37 min 100×37 min
Measuring on MCU 6 min 30 min

Total exploration time ∼12h >60h

5.3.5 Performance Breakdown. Table 3 shows the per-
formance breakdowns for our method. All latencies are col-
lected on the F4 board. From the table, we see that, after reuse
reduces over 90% of computation, GEMM only constitutes a
small portion of the total time (e.g., 20%), with much of the
time spent on memory access operations such as im2col.

Table 3. Performance breakdown of reuse (unit: ms). Trans-
formation includes im2col and layout transformation.

Network ConvLayer Latency Breakdown

Transformation Clustering GEMM Recovering

Cifarnet Conv1 50.07 15.82 17.3 3.8 13.15
Conv2 41.03 12.53 5 8 15.5

Sq
ue
ez
eN

et

Fire2.expand_3x3.conv 45.57 29.33 9 2.4 4.84
Fire3.expand_3x3.conv 54.4 29.08 17.92 2.4 5
Fire4.expand_3x3.conv 52.8 28.26 2.72 11.9 9.92
Fire5.expand_3x3.conv 74.7 65.34 3.6 5.76 40.5
Fire6.expand_3x3.conv 25 8.8 2.4 13.8 2.76
Fire7.expand_3x3.conv 49.5 25.6 11.5 12.4 19.32
Fire8.expand_3x3.conv 42.4 21.14 10.26 11 15.12

5.3.6 Out-of-distributionData. It is well known that out-
of-distribution (OOD) data are challenging for DNN models
to perform accurately [58]. Results in Table 4 show that, for
the original CifarNet model trained on the cifar-10 dataset,
the accuracy drops from over 70% to around 10% when the
model is tested on the SVHN [40] dataset, an OOD dataset
from the cifar-10 training set. We observe that, after the
DNN model gets optimized with our generalized reuse, the

Generalizing Reuse Patterns for Efficient DNN on Microcontrollers ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

Table 4. OOD data performance for original CNN (cifar-
Net) and CNN with reuse. Models are trained on the in-
distribution (ID) training data. Accuracy (ID) denotes ac-
curacy for the in-distribution testset and accuracy (OOD)
shows accuracy for the out-of-distribution dataset.

Model Dataset Accuracy Detection rate
ID OOD ID OOD

Traditional CNN cifar10 svhn 0.77 0.105 0.363
CNN with reuse 0.7434 0.0902 0.674

model’s sensitivity to OOD stays at a similar level (only a
slight drop from 10.5% to 9.02%).

In Machine Learning, there are various proposed methods
to detect OOD samples. We experiment one of the common
methods which uses the maximum softmax probability for
detection: If the maximum probability from the output of the
softmax of the DNN model on an input sample is below a
certain threshold (0.7 in our experiment), the system reports
OOD. The method shows a 36.3% detection rate on the orig-
inal CifarNet on the OOD dataset svhn, but a significantly
improved detection rate (67.4%) if the model is optimized
with our reuse. This resonates with observations in machine
learning: Approximate methods (reuse is one of them) en-
courage the model to focus on essential patterns in the input
data, rather than get overfit to minor details [5], which in
turn helps the model learn more generalizable features, and
hence become more alert to OOD data as they typically do
not have those features.

5.3.7 Additional Experiments for Larger Model. We
show the results of ResNet-18 in Figure 15. We use the down-
sampled ImageNet with 64×64 resolution since the original
large images cause ResNet to run out of MCU memory. The
learning rate is 0.01, while the training batch size and mo-
mentum are 100 and 0.8. All results are collected on the F4
board. Our method identifies the optimal reuse pattern that
minimizes approximation error and removes more redun-
dancy than SOTA, resulting in a 1.63× speedup and improved
accuracy in individual layers (with the exception of Conv3-2).
Our method can also reduce over 20% of end-to-end latency.

5.3.8 Alternative Quantization Method. Beside fixed-
point quanitzation, we also evaluate our reuse method on the
INT8 linear quantization of CifarNet, for both the weights
and activations. Figure 16 illustrates the end-to-end perfor-
mance on the F4 board. Our generalized reuse consistently
outperforms the SOTA and improves accuracy by finding the
reuse pattern that exploits data redundancy while keeping
the approximation error minimal.

5.3.9 Relation with Other Optimization Techniques.
Generalized reuse is orthogonal to optimization techniques
such as pruning, quantization, and hyperparameter tuning.

-1

-0.5

0

0.5

1

0

50

100

150

200

Co
nv
2-1

Co
nv
2-2

Co
nv
2-3

Co
nv
2-4

Co
nv
3-1

Co
nv
3-2

Co
nv
3-3

Co
nv
3-4

Co
nv
4-1

Co
nv
4-2

Co
nv
4-3

Co
nv
4-4

Co
nv
5-1

Co
nv
5-2

Co
nv
5-3

Co
nv
5-4

Δ
A

cc
ur

ac
y

(%
)

La
te

nc
y

(m
s)

SOTA Ours ΔAcc.

Figure 15. Experimental results of latency and accuracy
performance for ResNet-18 on ImageNet-64x64. ΔAccuracy
denotes the extra accuracy our method has over SOTA.

0

40

80

0.69 0.71 0.73 0.75 0.77 0.79

La
te

nc
y

(m
s)

Accuracy

SOTA
Ours

Conv2

0

40

80

120

0.69 0.71 0.73 0.75 0.77 0.79

La
te

nc
y

(m
s)

Accuracy

SOTA
Ours

Conv1

Figure 16. Experimental results of INT8 linear quantization.

Users can first apply these methods to transform their mod-
els and then apply reuse to that model to gain additional
benefits. We provide an example where we apply channel
pruning, fixed-point 8-bit quantization, and hyperparame-
ter tuning for learning rate and momentum to the original
model. For CifarNet, Table 5 demonstrates how the reuse
technique serves as an efficient optimization strategy that
preserves accuracy while providing further improvements
when combined with these techniques.

Table 5. Experimental results of different tradeoff tools. CP
refers to channel pruning, Q refers to quantization, and HPO
refers to hyperparameter optimization.

Technique Accuracy Latency (ms) FLOPS

CP + Q + HPO 0.78 217 15M
CP + Q + HPO + reuse 0.76 187 6M

6 Related Work
Computation reuse is an effective approach to saving compu-
tations and speeding up executions. Chen and others provide
a comprehensive survey on exploiting data redundancy for
optimization of Deep Learning [7]. A number of previous
studies have explored the similarities in input to accelerate
DNNs, through approaches in both hardware [8, 21, 31, 32]
and software [10, 27, 34]. Hardware efforts [48] usually de-
sign special hardware to exploit input reuse. Deep reuse [43,
55, 67], a pure software approach, inspired this work. Dif-
ferent from the straight-forward reuse pattern in the Deep

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Jiesong Liu, Bin Ren, & Xipeng Shen

Reuse, this work systematically characterizes the reuse pat-
tern space and unlocks the potential benefits of reuse for
DNN optimization.

DNN compression [19] that exploits the redundancy among
DNN parameters, is orthogonal to input-level reuse. Some of
the DNN compression techniques include quantization [60],
squeezing filter size [12], conducting feature compression
to activation map [50], more advanced neural architecture
search and space optimization [2, 35, 36], and so on. These
methods can substantially decrease the size of the model (i.e.,
weights and biases), the computational load, and the volume
of data that needs to be transferred from the edge to the
cloud. In resource-constrained microcontrollers, our design
demonstrates that input reuse and model compression are
implemented concurrently.
Another orthogonal approach to exploiting redundancy

in data for speedups is direct processing on compressed data,
that is, enabling data processing on compressed data with-
out decompression. Because compression already eliminates
many repetitions in content, the approach can automatically
avoid repeated processing of the same content. This approach
was initially proposed by Zhang and others for text analyt-
ics [64, 65, 67]. It was later extended to more general text
processing tasks [66, 68], server and embedded GPUs [46, 62],
graphs analytics [9] and deep learning [16].

7 Conclusion
This paper points out an important limitation on reuse pat-
terns in prior reuse-based DNN optimizations, the narrow
definitions of reuse patterns. It proposes the concept of gen-
eralized reuse that revolutionizes the conventional view of
explorable reuse, and establishes a reuse space that character-
izes a much broader range of reuse patterns. It uncovers the
relations between reuse patterns and row/column reorder
of a matrix view of the input or activation map of a DNN,
based on which, it provides an easy way to generate various
reuse patterns. It develops two novel analytical models for
analyzing the impacts of reuse patterns on the accuracy and
the latency of DNN inference, enabling efficient selection
of appropriate reuse patterns. It empirically evaluates the
effectiveness of the new solution on two models of MCUs,
confirming the substantial benefits of the new solution in
enabling efficient DNN inference across DNNs and MCU
hardware.

8 Ackowledgements
We thank Dr. Trevor Erik Carlson for shepherding the final
version of this paper and the anonymous reviewers for the
constructive comments. This work was supported in part by
the National Science Foundation (NSF) under the awards of
CCF-2047516 (CAREER) and CCF2146873. This material is
based upon work supported by the National Science Foun-
dation (NSF) under Grant No. NIH-1R01HD108473-01 and

USDA P24-001771. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of NIH
or USDA.

References
[1] CifarNet. http://places.csail.mit.edu/deepscene/small-projects/TRN-

pytorch-pose/model_zoo/models/slim/nets/cifarnet.py, 2020.
[2] Colby Banbury, Chuteng Zhou, Igor Fedorov, Ramon Matas, Urmish

Thakker, Dibakar Gope, Vijay Janapa Reddi, Matthew Mattina, and
PaulWhatmough. Micronets: Neural network architectures for deploy-
ing tinyml applications on commodity microcontrollers. Proceedings
of Machine Learning and Systems, 3:517–532, 2021.

[3] Jesús Benito-Picazo, Enrique Domínguez, Esteban J Palomo, Eze-
quiel López-Rubio, and Juan Miguel Ortiz-de Lazcano-Lobato. Deep
learning-based anomalous object detection system powered by micro-
controller for ptz cameras. In 2018 International Joint Conference on
Neural Networks (IJCNN), pages 1–7. IEEE, 2018.

[4] Neel Bhave, Aniket Dhagavkar, Kalpesh Dhande, Monis Bana, and Jyoti
Joshi. Smart signal–adaptive traffic signal control using reinforcement
learning and object detection. In 2019 Third International conference
on I-SMAC (IoT in Social, Mobile, Analytics and Cloud)(I-SMAC), pages
624–628. IEEE, 2019.

[5] Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan Frankle, and John
Guttag. What is the state of neural network pruning? Proceedings of
machine learning and systems, 2:129–146, 2020.

[6] Beidi Chen, Zichang Liu, Binghui Peng, Zhaozhuo Xu, Jonathan Lingjie
Li, Tri Dao, Zhao Song, Anshumali Shrivastava, and Christopher Re.
Mongoose: A learnable lsh framework for efficient neural network
training. In International Conference on Learning Representations, 2021.

[7] Jou-An Chen, Wei Niu, Bin Ren, Yanzhi Wang, and Xipeng Shen. Sur-
vey: Exploiting data redundancy for optimization of deep learning.
ACM Comput. Surv., 55(10), February 2023.

[8] Kun-Chih Jimmy Chen, Yueh-Chi Yang, and Yi-Sheng Liao. An ar-
bitrary kernel-size applicable noc-based dnn processor design with
hybrid data reuse. In 2021 IEEE International Midwest Symposium on
Circuits and Systems (MWSCAS), pages 657–660. IEEE, 2021.

[9] Zheng Chen, Feng Zhang, Jiawei Guan, Jidong Zhai, Xipeng Shen,
Huanchen Zhang, Wentong Shu, and Xiaoyong Du. Compressgraph:
Efficient parallel graph analytics with rule-based compression. Pro-
ceedings of the ACM on Management of Data, 1(1):1–31, 2023.

[10] Nihat Mert Cicek, Xipeng Shen, and Ozcan Ozturk. Energy efficient
boosting of gemm accelerators for dnn via reuse. ACM Transactions on
Design Automation of Electronic Systems (TODAES), 27(5):1–26, 2022.

[11] Arm Company. Cortex®-m4 technical reference manual, 2010.
[12] Amir Erfan Eshratifar, Amirhossein Esmaili, and Massoud Pedram.

Bottlenet: A deep learning architecture for intelligent mobile cloud
computing services. In 2019 IEEE/ACM International Symposium on
Low Power Electronics and Design (ISLPED), pages 1–6. IEEE, 2019.

[13] Igor Fedorov, Ryan P Adams, Matthew Mattina, and Paul Whatmough.
Sparse: Sparse architecture search for cnns on resource-constrained
microcontrollers. Advances in Neural Information Processing Systems,
32, 2019.

[14] Igor Fedorov, Ramon Matas, Hokchhay Tann, Chuteng Zhou, Matthew
Mattina, and Paul Whatmough. Udc: Unified dnas for compressible
tinyml models for neural processing units. Advances in Neural Infor-
mation Processing Systems, 35:18456–18471, 2022.

[15] Christoph Feichtenhofer, Axel Pinz, and Andrew Zisserman. Detect
to track and track to detect. In Proceedings of the IEEE international
conference on computer vision, pages 3038–3046, 2017.

http://places.csail.mit.edu/deepscene/small-projects/TRN-pytorch-pose/model_zoo/models/slim/nets/cifarnet.py
http://places.csail.mit.edu/deepscene/small-projects/TRN-pytorch-pose/model_zoo/models/slim/nets/cifarnet.py

Generalizing Reuse Patterns for Efficient DNN on Microcontrollers ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

[16] Hui Guan, Umang Chaudhary, Yuanchao Xu, Lin Ning, Lijun Zhang,
and Xipeng Shen. Recurrent neural networks meet context-free gram-
mar: Two birds with one stone. In Proceedings of the 2021 IEEE In-
ternational Conference on Data Mining (ICDM), pages 78–87. IEEE,
2021.

[17] Jiawei Guan, Feng Zhang, Jiesong Liu, Hsin-Hsuan Sung, Ruofan
Wu, Xiaoyong Du, and Xipeng Shen. Trec: Transient redundancy
elimination-based convolution. In Neural Information Processing Sys-
tems 35 (Neurips 2022), 2022.

[18] Chirag Gupta, Arun Sai Suggala, Ankit Goyal, Harsha Vard-
han Simhadri, Bhargavi Paranjape, Ashish Kumar, Saurabh Goyal,
Raghavendra Udupa, Manik Varma, and Prateek Jain. Protonn: Com-
pressed and accurate knn for resource-scarce devices. In International
Conference on Machine Learning, pages 1331–1340. PMLR, 2017.

[19] Song Han, Huizi Mao, and William J Dally. Deep compression: Com-
pressing deep neural networks with pruning, trained quantization and
huffman coding. arXiv preprint arXiv:1510.00149, 2015.

[20] Wei Han, Pooya Khorrami, Tom Le Paine, Prajit Ramachandran, Mo-
hammad Babaeizadeh, Honghui Shi, Jianan Li, Shuicheng Yan, and
Thomas S Huang. Seq-NMS for Video Object Detection. arXiv preprint
arXiv:1602.08465, 2016.

[21] Edward Hanson, Shiyu Li, Hai’Helen’ Li, and Yiran Chen. Cascading
structured pruning: enabling high data reuse for sparse dnn acceler-
ators. In Proceedings of the 49th Annual International Symposium on
Computer Architecture, pages 522–535, 2022.

[22] GeoffreyHinton, Oriol Vinyals, and JeffDean. Distilling the knowledge
in a neural network (2015). arXiv preprint arXiv:1503.02531, 2, 2015.

[23] Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf,
William J Dally, and Kurt Keutzer. Squeezenet: Alexnet-level accuracy
with 50x fewer parameters and< 0.5 mb model size. arXiv preprint
arXiv:1602.07360, 2016.

[24] Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf,
William J Dally, and Kurt Keutzer. SqueezeNet: AlexNet-level accuracy
with 50x fewer parameters and< 0.5 MB model size. arXiv preprint
arXiv:1602.07360, 2016.

[25] Sunil Jacob, Varun GMenon, Fadi Al-Turjman, PG Vinoj, and Leonardo
Mostarda. Artificial muscle intelligence system with deep learning for
post-stroke assistance and rehabilitation. Ieee Access, 7:133463–133473,
2019.

[26] Kai Kang, Hongsheng Li, Junjie Yan, Xingyu Zeng, Bin Yang, Tong
Xiao, Cong Zhang, Zhe Wang, Ruohui Wang, and Xiaogang Wang.
T-CNN: Tubelets with Convolutional Neural Networks for Object
Detection from Videos. IEEE Transactions on Circuits and Systems for
Video Technology, 28(10):2896–2907, 2017.

[27] Jungwoo Kim, Seonjin Na, Sanghyeon Lee, Sunho Lee, and Jaehyuk
Huh. Improving data reuse in npu on-chip memory with interleaved
gradient order for dnn training. In Proceedings of the 56th Annual
IEEE/ACM International Symposium on Microarchitecture, pages 438–
451, 2023.

[28] Aliaksei Kolesau and Dmitrij Šešok. Voice activation systems for
embedded devices: Systematic literature review. Informatica, 31(1):65–
88, 2020.

[29] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of
features from tiny images. 2009.

[30] Ashish Kumar, Saurabh Goyal, and Manik Varma. Resource-efficient
machine learning in 2 kb ram for the internet of things. In International
Conference on Machine Learning, pages 1935–1944. PMLR, 2017.

[31] Hyoukjun Kwon, Prasanth Chatarasi, Michael Pellauer, Angshuman
Parashar, Vivek Sarkar, and Tushar Krishna. Understanding reuse, per-
formance, and hardware cost of dnn dataflow: A data-centric approach.
In Proceedings of the 52nd Annual IEEE/ACM International Symposium
on Microarchitecture, pages 754–768, 2019.

[32] Hyoukjun Kwon, Prasanth Chatarasi, Vivek Sarkar, Tushar Krishna,
Michael Pellauer, and Angshuman Parashar. Maestro: A data-centric
approach to understand reuse, performance, and hardware cost of dnn

mappings. IEEE micro, 40(3):20–29, 2020.
[33] Liangzhen Lai, Naveen Suda, and Vikas Chandra. Cmsis-nn: Effi-

cient neural network kernels for arm cortex-m cpus. arXiv preprint
arXiv:1801.06601, 2018.

[34] Yuanchun Li, Ziqi Zhang, Bingyan Liu, Ziyue Yang, and Yunxin Liu.
Modeldiff: Testing-based dnn similarity comparison for model reuse
detection. In Proceedings of the 30th ACM SIGSOFT International Sym-
posium on Software Testing and Analysis, pages 139–151, 2021.

[35] Ji Lin, Wei-Ming Chen, Yujun Lin, Han Cai, Chuang Gan, and Song
Han. Mcunetv2: Memory-efficient patch-based inference for tiny deep
learning. arXiv preprint arXiv:2110.15352, 2021.

[36] Ji Lin,Wei-Ming Chen, Yujun Lin, Chuang Gan, and Song Han. Mcunet:
Tiny deep learning on iot devices. Advances in Neural Information
Processing Systems, 33:11711–11722, 2020.

[37] Jiesong Liu, Feng Zhang, Jiawei Guan, Hsin-Hsuan Sung, Xiaoguang
Guo, Xiaoyong Du, and Xipeng Shen. Space-efficient trec for enabling
deep learning on microcontrollers. In Proceedings of the 28th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 3, pages 644–659, 2023.

[38] Jiesong Liu, Feng Zhang, Jiawei Guan, Hsin-Hsuan Sung, Xiaoguang
Guo, Saiqin Long, Xiaoyong Du, and Xipeng Shen. Enabling efficient
deep learning on mcu with transient redundancy elimination. IEEE
Transactions on Computers, 2024.

[39] SimonMittermaier, Ludwig Kürzinger, BerndWaschneck, and Gerhard
Rigoll. Small-footprint keyword spotting on raw audio data with sinc-
convolutions. In ICASSP 2020-2020 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 7454–7458.
IEEE, 2020.

[40] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu,
and Andrew Y. Ng. Reading digits in natural images with unsupervised
feature learning. In NIPS Workshop on Deep Learning and Unsupervised
Feature Learning, 2011.

[41] Lin Ning, Hui Guan, and Xipeng Shen. Adaptive Deep Reuse: Ac-
celerating CNN training on the fly. In 2019 IEEE 35th International
Conference on Data Engineering (ICDE), pages 1538–1549. IEEE, 2019.

[42] Lin Ning and Xipeng Shen. Deep Reuse: streamline CNN inference
on the fly via coarse-grained computation reuse. In Proceedings of
the ACM International Conference on Supercomputing, pages 438–448,
2019.

[43] Lin Ning and Xipeng Shen. Deep reuse: streamline cnn inference on
the fly via coarse-grained computation reuse. In Proceedings of the
ACM International Conference on Supercomputing, pages 438–448, 2019.

[44] Nefy Puteri Novani, Mohammad Hafiz Hersyah, and Ryon Hamdanu.
Electrical household appliances control using voice command based
on microcontroller. In 2020 International Conference on Information
Technology Systems and Innovation (ICITSI), pages 288–293. IEEE, 2020.

[45] Zaifeng Pan, Feng Zhang, Hourun Li, Chenyang Zhang, Xiaoyong Du,
and Dong Deng. G-slide: A gpu-based sub-linear deep learning engine
via lsh sparsification. IEEE Transactions on Parallel and Distributed
Systems, 33(11):3015–3027, 2022.

[46] Zaifeng Pan, Feng Zhang, Yanliang Zhou, Jidong Zhai, Xipeng Shen,
Onur Mutlu, and Xiaoyong Du. Exploring data analytics without de-
compression on embedded gpu systems. IEEE Transactions on Parallel
and Distributed Systems, 32(12):2950–2964, 2021.

[47] Zheng Qin, Zhaoning Zhang, Xiaotao Chen, Changjian Wang, and
Yuxing Peng. Fd-mobilenet: Improved mobilenet with a fast down-
sampling strategy. In 2018 25th IEEE International Conference on Image
Processing (ICIP), pages 1363–1367. IEEE, 2018.

[48] Marc Riera, Jose-Maria Arnau, and Antonio Gonzalez. Computation
reuse in dnns by exploiting input similarity. In 2018 ACM/IEEE 45th An-
nual International Symposium on Computer Architecture (ISCA), pages
57–68, 2018.

[49] Falk Salewski and Stefan Kowalewski. Hardware/software design
considerations for automotive embedded systems. IEEE Transactions

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Jiesong Liu, Bin Ren, & Xipeng Shen

on Industrial Informatics, 4(3):156–163, 2008.
[50] Jiawei Shao and Jun Zhang. Bottlenet++: An end-to-end approach for

feature compression in device-edge co-inference systems. In 2020 IEEE
International Conference on Communications Workshops (ICC Work-
shops), pages 1–6. IEEE, 2020.

[51] Prerna Sharma and Deepali Kamthania. Intelligent object detection
and avoidance system. In International Conference on Transforming
IDEAS (Inter-Disciplinary Exchanges, Analysis, and Search) into Viable
Solutions, pages 342–351, 2019.

[52] Stanislava Soro. Tinyml for ubiquitous edge ai. arXiv preprint
arXiv:2102.01255, 2021.

[53] Srinivasa R Sridhara. Ultra-low power microcontrollers for portable,
wearable, and implantable medical electronics. In 16th Asia and South
Pacific Design Automation Conference (ASP-DAC 2011), pages 556–560.
IEEE, 2011.

[54] Hidetoshi Teraoka, Fumiharu Nakahara, and Kenichi Kurosawa. Incre-
mental update method for vehicle microcontrollers. In 2017 IEEE 6th
Global Conference on Consumer Electronics (GCCE), pages 1–2. IEEE,
2017.

[55] Ruofan Wu, Feng Zhang, Jiawei Guan, Zhen Zheng, Xiaoyong Du, and
Xipeng Shen. Drew: Efficient winograd cnn inference with deep reuse.
In Proceedings of the ACMWeb Conference 2022, pages 1807–1816, 2022.

[56] Fanyi Xiao and Yong Jae Lee. Video object detection with an aligned
spatial-temporal memory. In Proceedings of the European Conference
on Computer Vision (ECCV), pages 485–501, 2018.

[57] Xiaowei Xu, Yukun Ding, Sharon Xiaobo Hu, Michael Niemier, Jason
Cong, Yu Hu, and Yiyu Shi. Scaling for edge inference of deep neural
networks. Nature Electronics, 1(4):216–222, 2018.

[58] Jingkang Yang, Kaiyang Zhou, Yixuan Li, and Ziwei Liu. General-
ized out-of-distribution detection: A survey. International Journal of
Computer Vision, pages 1–28, 2024.

[59] JZ Yi, YK Tan, ZR Ang, and SK Panda. Microcontroller based voice-
activated powered wheelchair control. In Proceedings of the 1st interna-
tional convention on Rehabilitation engineering & assistive technology: in
conjunction with 1st Tan Tock Seng Hospital Neurorehabilitation Meeting,
pages 67–72, 2007.

[60] Jian Yuan, Kok Kiong Tan, Tong Heng Lee, and Gerald Choon Huat
Koh. Power-efficient interrupt-driven algorithms for fall detection
and classification of activities of daily living. IEEE Sensors Journal,
15(3):1377–1387, 2014.

[61] Matthew D Zeiler and Rob Fergus. Visualizing and understanding
convolutional networks. In European conference on computer vision,

pages 818–833. Springer, 2014.
[62] Feng Zhang, Zaifeng Pan, Yanliang Zhou, Jidong Zhai, Xipeng Shen,

Onur Mutlu, and Xiaoyong Du. G-tadoc: Enabling efficient gpu-based
text analytics without decompression. In Proceedings of the 37th IEEE
International Conference on Data Engineering (ICDE), pages 1616–1627.
IEEE, 2021.

[63] Feng Zhang, Jidong Zhai, Bingsheng He, Shuhao Zhang, and Wen-
guang Chen. Understanding co-running behaviors on integrated
CPU/GPU architectures. IEEE Transactions on Parallel and Distributed
Systems, 28(3):905–918, 2016.

[64] Feng Zhang, Jidong Zhai, Xipeng Shen, Onur Mutlu, and Wenguang
Chen. Efficient document analytics on compressed data: Method,
challenges, algorithms, insights. In Proceedings of the 44th International
Conference on Very Large Data Bases (VLDB), pages 1296–1309. VLDB
Endowment, 2018.

[65] Feng Zhang, Jidong Zhai, Xipeng Shen, Onur Mutlu, and Wenguang
Chen. Zwift: A programming framework for high performance text
analytics on compressed data. In Proceedings of the 32nd ACM Inter-
national Conference on Supercomputing (ICS), pages 347–358. ACM,
2018.

[66] Feng Zhang, Jidong Zhai, Xipeng Shen, Onur Mutlu, and Xiaoyong
Du. Enabling efficient random access to hierarchically compressed
data. In Proceedings of the 36th IEEE International Conference on Data
Engineering (ICDE), pages 841–852. IEEE, 2020.

[67] Feng Zhang, Jidong Zhai, Xipeng Shen, Onur Mutlu, and Xiaoyong
Du. POCLib: a high-performance framework for enabling near orthog-
onal processing on compression. IEEE Transactions on Parallel and
Distributed Systems, 33(2):459–475, 2022.

[68] Feng Zhang, Jidong Zhai, Xipeng Shen, DalinWang, Zheng Chen, Onur
Mutlu, Wenguang Chen, and Xiaoyong Du. TADOC: Text analytics
directly on compression. The VLDB Journal, 30(2):163–188, 2020.

[69] Yundong Zhang, Naveen Suda, Liangzhen Lai, and Vikas Chandra.
Hello edge: Keyword spotting on microcontrollers. arXiv preprint
arXiv:1711.07128, 2017.

[70] Xizhou Zhu, Yujie Wang, Jifeng Dai, Lu Yuan, and Yichen Wei. Flow-
guided feature aggregation for video object detection. In Proceedings
of the IEEE international conference on computer vision, pages 408–417,
2017.

[71] Xizhou Zhu, Yuwen Xiong, Jifeng Dai, Lu Yuan, and Yichen Wei. Deep
feature flow for video recognition. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 2349–2358, 2017.

	Abstract
	1 Introduction
	2 Background
	3 Generalized Reuse
	3.1 Review of Deep Reuse
	3.2 Key Insights and Reuse Space of Generalized Reuse
	3.3 Generalized Reuse: Three Views and Reordering
	3.4 Reuse Directions
	3.5 Reuse Granularity
	3.6 Problem Formulation of Generalized Reuse

	4 Reuse Pattern Selection
	4.1 Analytic Model of the Impact on Accuracy
	4.2 Analysis of Impact on Latency
	4.3 Workflow for Reuse Pattern Selection

	5 Evaluation
	5.1 Experimental Setup
	5.2 End-to-End Performance
	5.3 Ablation Study

	6 Related Work
	7 Conclusion
	8 Ackowledgements
	References

