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Abstract

Image generation requires intensive computations and faces challenges due to long
latency. Exploiting redundancy in the input images and intermediate representa-
tions throughout the neural network pipeline is an effective way to accelerate image
generation. Token merging (ToMe) exploits similarities among input tokens by
clustering them and merges similar tokens into one, thus significantly reducing the
number of tokens that are fed into the transformer block. This work introduces
Fourier Token Merging, a new method for understanding and capitalizing frequency
domain for efficient image generation. By introducing frequency token merging, we
find that transforming the token into the frequency domain representation for clus-
tering can better exert the ability of clustering based on the underlying redundancy
after de-correlation. Through analytical and empirical studies, we demonstrate the
benefits of using Fourier clustering over the original time domain clustering. We
experimented Fourier Token Merging on the stable diffusion model, and the results
show up to 25% reduction in latency without impairing image quality. The code is
available at https://github.com/Fred1031/Fourier-Token-Merging.

1 Introduction

Image generation has achieved impressive results through advanced generative models such as stable
diffusion [22], but these models face significant computational challenges and long latency, especially
when deployed on resource-constrained devices [5, 12, 27]. A primary avenue for addressing
these issues involves exploiting redundancies within input images and intermediate neural network
representations to streamline computation. Token merging (ToMe) represents one such approach,
utilizing clustering methods to merge similar tokens, thus substantially reducing computational
overhead within transformer blocks [2].

In this work, we introduce Fourier Token Merging, a novel technique that leverages frequency-domain
insights for efficient clustering and merging of tokens during image generation. Unlike traditional
methods, Fourier Token Merging transforms tokens into frequency-domain representations, capitaliz-
ing on the inherent redundancy revealed after decorrelation. By clustering tokens in this frequency
space, our method enhances clustering effectiveness and significantly reduces computational latency.

We present both theoretical and empirical analyses demonstrating that frequency-domain clustering
surpasses conventional time-domain clustering approaches in capturing token similarities. Specifically,
we show analytically that Fourier-based clustering reduces token error within clusters, especially as
the diffusion process progresses and as tokens propagate into deeper transformer layers. Empirical
results from extensive experiments on the stable diffusion v1.5 model validate our approach, achieving
up to a 25% latency reduction without sacrificing image quality.
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To the best of our knowledge, this is the first work to explore frequency domain for speeding up
image generation. Our results underline the potential of frequency-domain techniques to enhance the
efficiency and practicality of advanced generative models, opening new possibilities for deploying
high-quality image generation on edge devices and low-resource environments.

2 Background

Token Merging for Image Generation. Token merging [2, 3] has emerged as an effective technique
to optimize computational efficiency in generative image models such as stable diffusion. By grouping
similar tokens and merging them, these methods substantially reduce computational overhead and
latency during image generation processes. While most token merging methods focus on standard
Vision Transformers, Token Merging with Attention (ToMA) [16] is a key prior work that first
adapted token merging for DiT-like models (e.g., SDXL and Flux) by introducing a strategy to handle
their specific architectural challenges. More related work to reduce transformer computaion is in
Appendix C.

Discrete Fourier Transform. Central to our approach is the Fast Fourier Transform (FFT), a
widely used computational algorithm that efficiently computes the Discrete Fourier Transform (DFT).
The DFT decomposes a spatiotemporal signal into frequency-domain representations, revealing
correlations at different scales and orientations. For a given input x = {x0, · · · , xN−1}, the DFT is
defined as:

F(x)k =

N−1∑
n=0

xne
− 2πi

N nk, 0 ≤ k ≤ N − 1. (1)

The inverse transform, which reconstructs the original signal from its frequency-domain represen-
tation, is simply the conjugate transpose of the forward transform, emphasizing the linearity and
unitarity of the DFT. The FFT algorithm [6, 8] significantly reduces computational complexity from
O(N2) to O(N logN), facilitating rapid signal processing and making it practical for real-world
applications. Its computational efficiency and versatility have made it a standard tool across various
domains, notably signal and image processing. This background underpins our novel Fourier Token
Merging technique, leveraging frequency-domain insights to enhance image generation efficiency.

3 Fourier Token Merging for Image Generation

To accelerate inference in diffusion models on the fly without compromising visual fidelity, we
introduce a novel merging framework that leverages frequency-domain representations. Our approach,
termed Fourier Token Merging, augments existing token reduction techniques by incorporating global
structural priors via the Discrete Fourier Transform (DFT). Figure 1 illustrates the architecture of the
proposed system.

3.1 Modular Integration in the Diffusion Pipeline

Our framework is integrated into the denoising backbone of a diffusion model, such as the U-Net
used in Stable Diffusion. At each sampling timestep t, the model receives a noisy latent zt and
computes its denoised counterpart through a modified ϵθ network that supports frequency-domain
token merging.

The Original Merging Module represents baseline spatial-domain merging. The data are first clustered
in a token-level granularity and then each cluster uses the centroid to represent the whole cluster
and uses only that one token for further transformer block computation. The bipartite softmatch
clustering component partitions the tokens into two sets (src and dst) and computes the similarity
score between each of the src and dst pair. For each token in the src, the module clusters it with
the corresponding token in the dst with the highest similarity score. The module then computes
attention operations with the reduced tokens. Since the subsequent ResNet requires the full number
of tokens, tokens are unmerged to their original length, optimizing the computation speed in the
attention module. ResNet blocks and MLP layers remain unchanged.

The Fourier Merging Module transforms each token x ∈ Rd into the frequency domain via the
Discrete Fourier Transform (DFT), denoted by F(x) as introduced in Section 2. To reduce noises
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Figure 1: The proposed Fourier Token Merging Framework and the original Token Merging for
Diffusion Models. Fourier Token Merging integrates a frequency-aware merging mechanism into the
diffusion generation process. The Original Merging Module from the traditional method performs
token merging based on similarity in the spatial domain. In contrast, the Fourier Merging Module
processes intermediate visual representations using the Discrete Fourier Transform before truncating
the higher frequencies, enabling structured token merging in the frequency domain using a clustering
method called softmatch. The tokens are merged into the Attention Residual U-Net (ϵθ), which
computes the denoised prediction at each timestep. The figure shows the Diffusion Pipeline, where
the model iteratively denoises latent variables from zt down to the final output. This modular design
allows Fourier-based merging in place of existing merging techniques, improving both generation
efficiency and preservation of global structure.

while preserving structural semantics, we retain only the dominant low-frequency components and
discard the rest. This is done by truncating the real part of the DFT output according to a threshold
τ ∈ (0, 1]:

x̃ = Truncτ (Re (F(x))) (2)

Here, F(x) ∈ Cd is the full complex-valued spectrum, Re(·) extracts the real-valued coefficients,
and Truncτ (·) retains only the lowest τd frequency components. The resulting representation x̃ is
then used for similarity computation and token clustering, effectively emphasizing coarse-grained
structure while suppressing high-frequency noise.

The clustering component employing the same bipartite soft matching then identifies and clusters
tokens based on the frequency structures. This improves clustering according to the underlying
structures of the tokens after decorrelation of the time domain information. The clustering results
are then used to guide the merging process, according to which the original tokens are merged. The
reduced token set is then forwarded to the self-attention and cross-attention layers within the U-Net.

Once merged, the modified U-Net computes the denoised residual ϵθ(zt, t), which is used in a
standard reverse diffusion step to obtain zt−1. This process is repeated iteratively until the final clean
latent z0 is reached. By performing Fourier Token Merging at every timestep, the model enjoys
consistent computational savings throughout the generation trajectory.

In contrast to purely spatial methods, Fourier Token Merging enables:

(1) underlying redundancy detection: Frequency representations capture long-range dependencies
compactly, aiding the retention of layout and structure. The module exerts the ability to cluster
based on the underlying redundancy after decorrelation.

(2) compact representation: Many high-resolution regions exhibit sparsity in the frequency domain,
allowing more aggressive merging without degradation.

(3) compatibility: The module is lightweight, plug-and-play, and can be applied to pretrained
diffusion models without retraining.

3.2 Theoretical Approximation Error Analysis

We now analyze the approximation error introduced by Token Merging as a preparation for analyzing
the benefits of Fourier Token Merging. For a given input sequence X := [x1,x2, · · · ,xN ]⊤ ∈
RN×Dx of N feature vectors with bounded norm ∥xj∥ ≤ R, j = 1, · · · , N , self-attention transforms
X into the output sequence H in the following two steps:
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1. The input sequence X is projected into the query matrix Q, the key matrix K, and the value
matrix V via three linear transformations

Q = WQX; K = WKX; V = WV X,

where WQ,WK ∈ RD×Dx , and WV ∈ RDv×Dx are the weight matrices. Let Q :=
[q1, · · · ,qN ],K := [k1, · · · ,kN ],V := [v1, · · · ,vN ] where qi,ki,vi are query, key, and
value vectors respectively.

2. The output sequence H := [h1, · · · ,hN ] is computed as

H⊤ = σ

(
Q⊤K√

D

)
V⊤ := σ

(
A√
D

)
V⊤

where σ denotes the softmax function applied row-wise to A = Q⊤K. Let aij denote the
attention scores.

Assuming linear attention, where σ(x⊤) = x⊤, the output for query qi is:

hi =

N∑
j=1

q⊤
i kj · vj ⇒ h⊤

i = WV

 N∑
j=1

xjx
⊤
j

W⊤
KWQxi. (3)

Suppose that we cluster the token set into C disjoint clusters {Ck}Ck=1, and approximate each token
xj by its corresponding cluster centroid xk(j). Define the approximated attention output by

h′⊤
i = WV

(
C∑

k=1

|Ck| · x̄kx̄
⊤
k

)
W⊤

KWQx̄c(i), (4)

where c(k) and c(i) denote the indices of the clusters containing tokens xk and xi, respectively.

Now, we analyze the effect of token merging by introducing the following theorem.
Theorem 1 (Token Merging Error Bound). Let {Ck}Ck=1 be a clustering of the token set {xj}Nj=1,
and let x̄k = 1

|Ck|
∑

j∈Ck
xj be the centroid of cluster Ck. Suppose xi and all xj ∈ Ck are replaced

by their respective centroids. Then the approximation error between original and merged attention
satisfies: ∥∥∥hi − hmerged

i

∥∥∥ ≤ L1 ·
∥∥xi − x̄c(i)

∥∥+ L2 ·
C∑

k=1

∑
j∈Ck

∥xj − x̄k∥ ,

where c(i) is the index of the cluster containing xi, and constants L1, L2 depend on network
parameters and operator norms.

Furthermore, following Cluster Distortion Decay Assumption 1, the total error satisfies the asymptotic
bound ∥∥∥hi − hmerged

i

∥∥∥ = O
(

N

C1/Dx

)
,

indicating that merging accuracy improves as the number of clusters C increases.

The proof is provided in Appendix A.

3.3 Empirical Structural Analysis

To validate the theoretical insight presented in Theorem 1, we begin by analyzing the structural
properties of token clusters formed during the merging process. Specifically, we examine whether
Fourier-based token merging results in tighter and more coherent token groupings—two key factors
that directly affect the magnitude of the approximation error bound. The results shown below are
conducted with a fixed truncation ratio τ = 0.7.

Figure 2 presents a comparison of structural integrity between Fourier and non-Fourier merging. Each
point in the figure refers to a specific merging layer. There are five merging layers for each diffusion
step. The left plot reports the cluster similarity, defined as the average cosine similarity among token
vectors within each cluster. Higher values indicate stronger internal coherence. Fourier merging
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consistently achieves greater intra-cluster similarity, suggesting that it identifies more semantically
aligned groups. The right plot shows the token error within cluster, measured as the mean ℓ2 distance
from each token to its cluster centroid. Again, Fourier merging results in significantly lower intra-
cluster variance, supporting the claim that frequency-domain groupings are geometrically compact.
Looking into the individual layers in each diffusion step, for both the Fourier merging and non-Fourier
merging, the cluster similarity increases as the layer becomes deeper, meaning the similarity of tokens
in deeper layers is better exploited by abstracting the features of the image.
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Figure 2: Comparison of Cluster Similarity and Token Error across Diffusion Steps. This
figure presents two metrics averaged over diffusion steps to evaluate the structural behavior of
token merging strategies. Up: The average cosine similarity among token vectors within the same
cluster.Fourier-based merging maintains consistently higher similarity, indicating more coherent
token grouping across the generation process. Down: The average token error within each cluster,
defined as the mean distance between tokens and their cluster centroid. Fourier merging yields lower
intra-cluster error, suggesting more compact and semantically aligned clusters. These trends highlight
the advantage of frequency-based merging in preserving structural consistency over time.
To further support this observation, Table 1 reports aggregated statistics over different merging ratios
for both traditional and Fourier-based methods. As the merging ratio—i.e., the degree of token count
reduction per transformer block—increases, Fourier-based merging consistently maintains higher
cluster similarity and lower token error. Notably, at low merging ratios (e.g., 0.1), Fourier merging
achieves a 0.16 reduction in token error compared to traditional merging, while involving a similar
number of active cluster centers (Here, active cluster refers to the number of unique dst tokens
receiving merged src tokens at each diffusion step. For example, there are 231 unique dst tokens
receiving merged src tokens). As the ratio increases, Fourier merging slightly expands the number of
such active clusters, yet still demonstrates superior semantic compactness, as reflected by the lower
error metric. These results suggest that Fourier-based merging distributes merges more evenly while
selectively preserving semantically important structures, leading to better-structured clusters even
under higher compression.

Traditional Token Merging Fourier Token Merging

Ratio Similarity
(↑)

Active
Clusters

(↑)

Token
Error
(↓)

Error
Metric

(↓)

Similarity
(↑)

Active
Clusters

(↑)

Token
Error
(↓)

Error
Metric

(↓)

0.1 0.90 231 0.73 13.85 0.91 231 0.57 11.94
0.2 0.88 396 0.74 19.23 0.89 399 0.76 19.12
0.3 0.87 507 0.98 33.61 0.89 523 0.86 27.11
0.4 0.87 624 1.23 46.96 0.88 605 0.98 40.56
0.5 0.86 706 1.32 59.29 0.86 716 1.38 58.82

Table 1: Comparison between non-Fourier and Fourier token merging across different merge ratios.
Bold numbers indicate better performance (↑: higher is better; ↓: lower is better).

In Figure 3, we further investigate cluster statistics across diffusion steps. The left subplot reports the
number of active cluster centers (i.e., dst tokens) that the src tokens are merged into at each step.
This effectively reflects the distribution spread of token merges and indicates the level of compression
granularity. The shaded region denotes the standard deviation across five runs. Interestingly, despite
its structure-preserving nature, Fourier-based merging results in a comparable or even higher number
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of utilized cluster centers than its non-Fourier counterpart, suggesting broader merge distribution and
reduced concentration bias.

The right subplot depicts an aggregate error metric within cluster, designed to reflect intra-cluster
dispersion as it appears in the second term of the inequality in Theorem 1. Although traditional
merging performs clustering directly in the time domain, Fourier-based merging surprisingly achieves
lower within-cluster error throughout the generation trajectory.

This apparent contradiction arises from the fact that Fourier clustering operates on a denoised, low-
frequency representation of the tokens, suppressing high-frequency fluctuations that often introduce
spurious local variation. As a result, the clusters it produces are more semantically coherent and robust
to transient noise. Thus, even though Fourier merging makes clustering decisions in a compressed
space, the resulting assignments tend to yield lower dispersion in the original domain.
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Figure 3: Evolution of Error Metrics and Number of Active Cluster Centers across Diffusion
Steps. This figure analyzes the dynamics of token merging through two global metrics. Left:
Number of unique dst tokens receiving merged src tokens at each diffusion step. This reflects
the effective number of cluster centers actively used during token merging. Fourier-based merging
exhibits a more stable and often broader distribution of merges, indicating smoother and semantically
consistent clustering behavior. Right: A global error metric measuring total intra-cluster variation.
The Fourier merging consistently achieves lower error across the generation timeline, indicating
better information retention. Together, these plots validate the efficiency and accuracy benefits of
incorporating Fourier-domain priors in token merging strategies.

Together, these results confirm that frequency-domain merging yields clusters with higher semantic
coherence and reduced variance—two properties that, according to our theoretical analysis, directly
reduce the approximation error in attention computations.

4 Adaptive Fourier Token Merging Scheme

4.1 Cluster Visualization Analysis

To better understand the behavior of frequency-based token merging, we begin with a qualitative
visualization of clustering results. Figure 4 presents examples from two cat images in the CIFAR-10
dataset, where clustering is applied to the red channel of the original 32× 32 images. For each pixel,
we extract a 5×5 local patch centered at that pixel and treat it as a token. The figure shows the largest
10 clusters obtained using both Fourier and non-Fourier token merging, visualized as 2D scatter plots.

We observe that Fourier-based clustering produces more structured and semantically coherent clusters.
By suppressing high-frequency components, it is able to group together patches that are visually
similar in texture or pattern, even when their raw pixel values differ significantly due to noise or local
variance. This indicates that frequency-domain clustering can effectively abstract away irrelevant
variations, yielding more meaningful token groupings.

To assess whether these benefits generalize to deeper representations, we extend our analysis in
Appendix B (Figure 9) to intermediate activations from a CifarNet-like model (e.g., outputs from
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Figure 4: Visualization of the top 10 clusters for Fourier and non-Fourier merging on two CIFAR-
10 cat images (red channel only). Each point corresponds to a 5 × 5 local patch treated as a
token belonging to a particular cluster. Fourier-based clustering yields denser and more structured
groupings.

the second convolutional layer). Unlike raw pixel inputs, these activations resemble multi-channel
heatmaps with more diffuse spatial organization.

In this higher-level feature space, we find that clustering results remain structured, but now prioritize
semantic similarity over local texture. Clusters appear less periodic and more abstract, indicating a
shift in the type of information being preserved.

These findings suggest that the optimal degree of frequency truncation should be input-dependent: For
low-level features (e.g., raw RGB patches), retaining more frequency information helps capture spatial
regularities. For high-level activations, more aggressive truncation can be beneficial, suppressing
noise and redundancy to highlight semantically relevant patterns.

4.2 Adaptive Scheme for Truncation Ratio Scheduling

Motivated by the above analysis, we introduce an adaptive truncation scheme that dynamically
adjusts the truncation ratio based on diffusion timestep and layer depth—two factors that affect token
complexity and noise level.

First, we adapt truncation along the diffusion step axis. In early diffusion steps, the input represen-
tations are highly stochastic and noisy. This favors stronger truncation to eliminate high-frequency
noise and improve clustering robustness. As generation proceeds and signals become more refined,
we gradually reduce the truncation ratio to preserve finer details.

Second, we adapt along the layer depth within the network. Early layers tend to encode low-level
details such as texture and edges, which are sensitive to frequency suppression. To retain these
features, we apply a higher truncation ratio (i.e., less truncation). In deeper layers, the tokens become
more abstract and semantically structured, allowing for more aggressive frequency pruning without
degrading cluster coherence.

Formally, we model the truncation ratio τ as a function of timestep t and layer index ℓ, normalized
within their respective ranges:

τ(t, ℓ) = interpolate (τmin, τmax;λt · norm(t) + λℓ · norm(ℓ))

where λt and λℓ control the relative importance of timestep and layer depth, and τmin, τmax define
the bounds of the truncation ratio. These are considered as hyperparameters.

This adaptive scheduling mechanism ensures that Fourier Token Merging remains sensitive to the
structural demands of each layer and each stage of the generation process, leading to improved
quality–latency tradeoffs across the board.

5 Experiments
We conduct a series of experiments on the Fourier Token Merging to validate its efficacy of for
efficient image generation.
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5.1 Experimental Setup
Methodology. To evaluate the effectiveness of Fourier Token Merging, we integrate the proposed
frequency-based method into Stable Diffusion (SD) (CC-BY 4.0) models [22]. We experiment with
various merging ratios—i.e., different degrees of token count reduction per transformer block—to
assess performance under different merging configurations. Results are compared against those of the
original Token Merging baseline. The Fourier Token Merging is applied to transformer blocks with
a downsampling level of at most 1, covering a total of five layers. We select τmin in {0.3, 0.4, 0.5}
and τmax in {0.6, 0.8, 1.0}, respectively, and traverse λt = 1−λℓ in {0, 0.1, · · · , 1.0} and report the
best result.

Platform. Experiments are conducted on a system equipped with a 12-core (8 Performance-cores
and 4 Efficient-cores) Intel Core i7-12700K CPU operating at a base frequency of 3.60GHz, 128GB
of RAM, and an NVIDIA GeForce RTX 4090 GPU with 24GB of GDDR6X memory. The GPU
features 16,384 CUDA cores based on the Ada Lovelace architecture, offering a memory bandwidth
of up to 1,008GB/s.

Workloads. The goal of Fourier Token Merging is to achieve better performance in SD models while
maintaining generation quality close to that of the full-token baseline. To evaluate this, we sample
two images per class from all 1,000 ImageNet (CC-BY 4.0) categories, using prompts of the form “a
photo of a CLASS”. Comparisons are made with a fixed random seed to ensure consistency across
runs.

We use the Fréchet Inception Distance (FID) [10] to assess the distributional similarity between
images generated by the diffusion model and 5,000 class-balanced ImageNet-1k val examples. In
addition, LPIPS [34] is used to measure pairwise perceptual similarity between images generated
by the full model and the ones that use token merging. while MS-SSIM [29, 30] quantifies pairwise
structural consistency. Both LPIPS and MS-SSIM are computed at the image level to capture
deviations from the full-token baseline under a fixed random seed.

5.2 Experimental Results
We evaluate Fourier Token Merging by measuring its impact on both image quality and generation
efficiency. Figure 5 reports latency against three metrics: FID, LPIPS, and MS-SSIM.
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Figure 5: Comparison of latency versus image quality metrics between the baseline and our method.
The different points on a curve correspond to different token merging ratios. Left: FID vs. latency,
showing that our method achieves lower latency for comparable or better FID. Middle: LPIPS vs.
latency, demonstrating improved perceptual similarity over baseline. Right: MS-SSIM vs. latency,
indicating stronger structural consistency with minimal latency overhead. Note that Pareto frontiers
are selected from a set of hyperparameter settings, and therefore differ across subplot. Overall, our
approach consistently improves the quality-efficiency tradeoff across multiple evaluation metrics.

FID. Our method achieves comparable or improved FID relative to the baseline across all configura-
tions, while consistently reducing generation latency. This indicates that frequency-domain merging
preserves the global semantics of generated images.

LPIPS. Despite aggressive compression, Fourier Token Merging maintains perceptual similarity on
par with the baseline. In several cases, it achieves lower LPIPS at lower latency, suggesting improved
retention of local visual features.

MS-SSIM. We observe consistently higher MS-SSIM scores with minimal latency overhead, indi-
cating stronger structural coherence in the generated outputs. This aligns with the hypothesis that
frequency-based grouping enhances token alignment.
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Across all metrics, Fourier Token Merging delivers favorable quality-efficiency tradeoffs, validating
the theoretical benefits of frequency-aware token reduction in diffusion models.

5.3 Ablation Study

To better understand the contribution of each component in our design, we perform an ablation
study across two axes: (i) the effect of the truncation ratio under fixed token merging ratios, and (ii)
the impact of using Fourier-based clustering versus alternative frequency-domain, such as wavelet
transforms.

Effect of Truncation Ratio. To investigate the influence of the truncation ratio τ , we conduct a
controlled ablation by varying the fixed τ ∈ 0.2, 0.3, . . . , 1.0 throughout the model across five fixed
merging ratios (0.1 to 0.5). The resulting FID scores and latencies are reported in Figure 6. While the
latency remains roughly the same across the truncation ratio, the FID score can change with different
levels of truncation. We note that the optimal truncation level depends on the merging aggressiveness.
When the merging ratio is low (i.e., fewer tokens are merged), preserving high-frequency information
helps maintain generation fidelity. However, as merging becomes more aggressive, discarding more
high-frequency components improves output quality. This suggests that low-frequency clustering
becomes increasingly beneficial under stronger compression, possibly due to its robustness to local
noise and redundancy.
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Figure 6: FID vs. Truncation Ratio under varying token merging ratios.
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Figure 7: Wavelet vs. Fourier To-
ken Merging: FID vs. Latency.

Wavelet vs. Fourier. We further compare the proposed DFT-
based approach against a wavelet-based clustering scheme
(Haar wavelet). Results in Figure 7 indicate that wavelet-based
merging exhibits higher latency and inferior FID compared to
our method. This gap is mainly attributed to the extra over-
head from multi-resolution decomposition and the lack of effi-
cient GPU methods to implement wavelet transformation. Our
Fourier approach, in contrast, allows for efficient transforma-
tion and preserves salient global structure, leading to more
favorable accuracy-efficiency tradeoffs.

Real-coefficients of Fourier tokens vs. full complex tokens.
For efficiency, we adopt only the real coefficients of the Fourier tokens. Empirically, using the
real part consistently achieves comparable or superior performance. For example, it attains 84.33%
accuracy, slightly outperforming both the absolute-value representation (84.29%) and the full complex
representation (84%).

5.4 Results for Generalizability

Baseline

Cat

Token Merging
0%

Fourier Token Merging
20% 50%20% 70%50%70%

Figure 8: Visualization of Token Merging and Fourier Token
Merging on the FLUX model.

Generalization to Diffusion Trans-
formers (DiTs). Our Fourier Token
Merging method aims for broader ap-
plicability. Existing token merging
methods often struggle with DiT’s spe-
cialized architecture and ROPE em-
beddings. Specifically, our implemen-
tation of Fourier Token Merging for
the DiT architecture, which handles
the complex structure of Joint/Single
transformers, follows the integration
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strategy introduced by Token Merg-
ing with Attention (ToMA) [16]. We
have done experiments on DiT mod-
els, specifically FLux.1-dev, tailoring
FTM to their specific transformer blocks. Results show benefits. Even with a large merging ra-
tio (0.75), we maintain high image quality (1.83 FID increase) while achieving over 20% latency
reduction. This suggests FTM’s strong generalization capabilities to diverse diffusion models, in-
cluding DiT-like architectures, distinguishing our approach and highlighting its potential for current
foundation models.

Generalization to Image Classification. We experimented our Fourier Token Merging in ViT
models. Results show that our method generalizes well on image classification tasks. For ImageNet
val-1k dataset on the 4090 machine, with the same level of throughput (e.g. around 2000 im/s),
our method increases the accuracy by 0.7 point (from 83.09% to 83.79%). With the same level of
accuracy, our method achieves 1.2 × speedups.

Regarding deployment efficiency, our empirical measurements confirm that the overhead is minimal.
The wall-clock time for the FFT is under 0.1 ms on average, which accounts for only 0.25% to 0.4%
of the total inference time.

Overall, this study highlights the value of frequency-domain structural cues and validates our design
choices in achieving compression with minimal quality degradation.

6 Conclusion

This work introduces Fourier Token Merging, a novel method for accelerating image generation
by exploiting token redundancy in the frequency domain. By transforming tokens via the Discrete
Fourier Transform and performing clustering in the low-frequency subspace, our method improves
the semantic alignment and compactness of token groups, leading to lower approximation error in
self-attention computations. Theoretical analysis formalizes the error bounds introduced by token
merging, and extensive empirical studies across structural metrics, attention distortion, and image
quality evaluations (FID, LPIPS, MS-SSIM) confirm the effectiveness of our approach.

Compared to baseline token merging methods, Fourier Token Merging achieves up to 25% latency
reduction while maintaining or even improving generation quality. Ablation studies further demon-
strate the importance of frequency-aware clustering and validate the impact of truncation ratios
under varying merging aggressiveness. We also explore adaptive schemes that adjust frequency
truncation based on layer depth and diffusion timestep, offering a flexible and robust extension to the
proposed framework. One limitation is that Fourier transform may be computationally intensive for
resource-constrained devices. Its societal impacts are neutral.

Overall, our results highlight the potential of leveraging frequency-domain structure for efficient
generative modeling, and provide a modular, plug-and-play solution applicable to a wide range of
diffusion-based image generation systems.
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A Proof of Theorem 1

Assumption 1. Although the clustering method used in our token merging strategy is not necessarily
k-means, we assume that it produces clusters with distortion comparable to those obtained by k-
means. That is, we assume the mean-squared intra-cluster error satisfies the standard quantization
rate:

MSEcluster :=
1

N

N∑
j=1

∥xj − x̄c(j)∥2 = O
(

1

C2/dx

)
,

where dx is the input feature dimension, and C is the number of clusters. This assumption is
commonly satisfied under mild regularity conditions when the data lies on a compact manifold or is
sampled from a distribution with bounded support.

Proof. We express the attention output as:

hi =

N∑
j=1

f(xi,xj), where f(xi,xj) := (WQxi)
⊤(WKxj) ·WV xj .

Under token merging, all xj ∈ Ck are replaced by x̄k, and the query xi ∈ Cc(i) is replaced by x̄c(i).
The merged attention output is:

hmerged
i =

K∑
k=1

∑
j∈Ck

f(x̄c(i), x̄k)

The total error is:

δhi := hmerged
i − hi =

K∑
k=1

∑
j∈Ck

(
f(x̄c(i), x̄k)− f(xi,xj)

)
For each pair (i, j), we apply first-order Taylor expansion around (xi,xj):

f(x̄c(i), x̄k)− f(xi,xj) ≈ ∇xi
f · (x̄c(i) − xi) +∇xj

f · (x̄k − xj)

Taking the norm and summing over all j, we obtain:

∥δhi∥ ≤
K∑

k=1

∑
j∈Ck

(
∥∇xif∥ ·

∥∥x̄c(i) − xi

∥∥+ ∥∥∇xjf
∥∥ · ∥xj − x̄k∥

)
Bounding gradients by constants L1, L2, we arrive at:

∥δhi∥ ≤ L1 ·
∥∥x̄c(i) − xi

∥∥+ L2 ·
K∑

k=1

∑
j∈Ck

∥xj − x̄k∥

We then look into the second half of the theorem. Following 3 and 4, the total approximation error
can be decomposed as

∆h⊤
i = h⊤

i − h′⊤
i = WV

[
(Σx − Σ′

x)W
⊤
KWQxi +Σ′

xW
⊤
KWQ(xi − x̄c(i))

]
,

where Σx :=
∑N

j=1 xjx
⊤
j and Σ′

x :=
∑C

k=1 |Ck|x̄kx̄
⊤
k .

We now bound each term individually. Let ej := xj − x̄c(j) denote the clustering error. Then

∥Σx − Σ′
x∥F ≤ 2RN

√√√√ 1

N

N∑
j=1

∥ej∥2 = 2RN ·
√

MSEcluster.
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If the input distribution satisfies mild regularity conditions (e.g., bounded support or sub-Gaussian),
classical results from quantization theory imply

MSEcluster = O
(

1

C2/Dx

)
⇒ ∥Σx − Σ′

x∥F = O
(

N

C1/Dx

)
.

Meanwhile, the second term satisfies

∥xi − x̄c(i)∥ ≤ max
j

∥ej∥ ≤
√

MSEcluster = O
(

1

C1/Dx

)
.

Combining both, we have

∥h⊤
i − h′⊤

i ∥ ≤ ∥WV ∥ ·
(
O
(

N

C1/Dx

)
· ∥W⊤

KWQxi∥+O(1) · ∥W⊤
KWQ∥ ·

1

C1/Dx

)
,

which simplifies to

∥hi − h′
i∥ = O

(
N

C1/Dx

)
.

This concludes the proof.

B Additional Clustering Visualization

We show the clustering visualization when the inputs are the intermediate representation.

Fourier
Clusters

Intermediate
representation
(16 Channels)

Non-Fourier
Clusters

Fourier
Clusters

Non-Fourier
Clusters

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8 Cluster 9 Cluster 10

Fourier
Clusters

Non-Fourier
Clusters

Fourier
Clusters

Non-Fourier
Clusters

Figure 9: Visualization of the top 10 clusters for Fourier and non-Fourier merging on intermediate
representations. Same setting as in Figure 4. Fourier-based clustering yields denser and more
structured groupings.

C Additional Related Work

Numerous methods have been proposed to reduce the computational cost of transformer-based models
by minimizing token-level redundancy [1, 4, 7, 11, 16, 17, 19, 31, 33]. Among the most prominent are
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Token Merging (ToMe) [2], DynamicViT [20], and AdaViT [18], which dynamically prune or merge
tokens based on content similarity or learned importance. These approaches significantly improve
inference efficiency. However, they operate exclusively in the time domain and thus do not exploit the
latent redundancy that may be more readily revealed through frequency-domain transformations [23].

Token Reduction in Vision Transformers. Token-level acceleration strategies have received
substantial attention in recent years. ToMe [2] reduces the number of tokens by clustering and
merging similar ones during inference. Other notable works such as EvViT [28] and EViT [15]
employ early exiting or progressive token pruning based on attention rollout and token significance.
Vision Token Distillation [9] distills token representations into a compact set, while Patch Slimming
[25] reduces spatial redundancy through aggressive downsampling.

Frequency-domain Representations. Compared to the wealth of time-domain methods, only a
few studies have explored frequency-domain approaches for model acceleration. FNet [13] replaces
attention mechanisms with Fourier transforms in NLP models, offering a lightweight alternative
to self-attention. Spectral pooling [21] leverages low-pass filtering in the frequency domain to
compress CNN activations. Structured FFT attention [14] approximates global attention patterns
using FFT-based operations. GaborViT [32] enhances local feature encoding via frequency-oriented
Gabor filters. These works highlight the untapped potential of frequency representations. Our method
builds directly on this foundation by performing token clustering in the frequency domain—a novel
direction for transformer acceleration in diffusion models—with both analytical justification and
empirical validation.

Additional Comparison to SOTA. We included the results of several SOTA baselines as follows.
AT-EDM [26] is an SOTA token pruning method that offers 1.13× speedup over ToMe but loses
quality. Our method, at a similar 1.1× speedup, actually decreases FID (40.75 vs. 41.31), showing
better quality-speed trade-off. Other token Downsampling method [24] helps only at very high
merging ratios (e.g., 0.89), leading to longer latency at lower ratios (e.g., 0.75). In contrast, our
method consistently achieves speedups across various ratios, e.g., 1.3× at 41.8 FID.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: See Section 1, Section 3.2, and Section 5.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We state them at the end of Section 6.
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Justification: See Section 3.2 and appendix A.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We include them in Section 5 and the supplemental material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We include them in the supplemental material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: See Section 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We conducted 5 runs for the experiments. For Figure 3, besides the average
results of the repetitions, we also report the standard deviation.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:[Yes] .

Justification: See Section 5.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We conform with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: As stated in Section 6, our work is a general algorithm aiming at optimizing
image generation and belongs to a foundational research; its societal impacts are neutral.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
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• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
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• If there are negative societal impacts, the authors could also discuss possible mitigation
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feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: We release only the acceleration module for image generation models, which
cannot function independently and requires a pre-existing pretrained model such as Stable
Diffusion. To mitigate potential misuse, we do not provide any pretrained weights or
downstream application-specific code (e.g., for face generation or text-to-image). Our code
is released under a non-commercial license and includes a usage disclaimer that explicitly
limits its use to academic research purposes. We also do not release any datasets or scraped
content.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes] .

Justification: We have cited the creators for the existing assets and included the name of the
license. See Section 5.1.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: See supplementary materials.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA] .
Justification: We limit our use of LLM within writing, editing, or formatting purposes and
does not impact the core methodology, scientific rigorousness, or originality of the research,
declaration is not required
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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