
TREC: Transient Redundancy Elimination-based
Convolution

Jiawei Guan⋄, Feng Zhang⋄, Jiesong Liu⋄, Hsin-Hsuan Sung⋆,
Ruofan Wu⋄, Xiaoyong Du⋄, Xipeng Shen⋆

⋄Key Laboratory of Data Engineering and Knowledge Engineering (MOE),
and School of Information, Renmin University of China

⋆Computer Science Department, North Carolina State University
guanjw@ruc.edu.cn, fengzhang@ruc.edu.cn, liujiesong@ruc.edu.cn, hsung2@ncsu.edu,

ruofanwu@ruc.edu.cn, duyong@ruc.edu.cn, xshen5@ncsu.edu

Abstract

The intensive computations in convolutional neural networks (CNNs) pose chal-
lenges for resource-constrained devices; eliminating redundant computations from
convolution is essential. This paper gives a principled method to detect and avoid
transient redundancy, a type of redundancy existing in input data or activation maps
and hence changing across inferences. By introducing a new form of convolution
(TREC), this new method makes transient redundancy detection and avoidance an
inherent part of the CNN architecture, and the determination of the best configura-
tions for redundancy elimination part of CNN backward propagation. We provide
a rigorous proof of the robustness and convergence of TREC-equipped CNNs.
TREC removes over 96% computations and achieves 3.51× average speedups on
microcontrollers with minimal (about 0.7%) accuracy loss.

1 Introduction

Convolutional Neural Networks (CNNs) are computation intensive, making their deployment on
resource-constrained devices (e.g., Microcontrollers equipped with 2MB memory) challenging.
Removing computation redundancy in convolutions is hence an important way to speed up CNN
inferences.

Depending on where the redundancy comes from, redundancy in CNN can be classified into lasting
redundancy and transient redundancy. Lasting redundancy arises from CNN parameters. As the
parameters typically stay unchanged after CNN is deployed for inference, such redundancy can be
detected and removed through offline methods (e.g., DNN pruning [9, 10, 13, 23, 24, 35, 36] and
quantization [16, 18, 27, 34]). Transient redundancy, on the other hand, arises from input data or
activation maps, manifesting as similar tiles within an image or an activation map. Unlike lasting
redundancy, transient redundancy has to be detected and removed in every inference, elusive to
offline methods.

Although transient redundancy has been observed in images [26] and videos [17, 37, 38, 39],
understanding to it is much less than to lasting redundancy. Prior studies have treated transient
redundancy in an ad-hoc manner. Deep Reuse [26], for instance, diverts, before a convolution, the
input images or activation maps from the DNN pipeline to a randomized (to avoid bias) online
clustering component to detect the contained redundancy, and then redirects the clustering results
back to the DNN. Such ad-hoc treatments work well sometimes on some data, but perform badly
in other times (e.g., over 5% accuracy fluctuations in different runs). The reason is the lack of
understanding to some fundamental aspects of transient redundancy. Examples include

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

(1) How to reach the optimal setting to minimize the accuracy loss caused by redundancy elimination
while maximizing the eliminated redundancy?

(2) How to ensure a stable robust inference performance of transient redundancy elimination across
runs?

(3) How to minimize the interference imposed by the transient redundancy elimination to the result
of the converged training of CNN?

This paper proposes a principled way to detect and avoid transient redundancy for CNN inference.
By introducing a new CNN operator named TREC, it fuses the detection and avoidance of transient
redundancy into CNN, making them part of its inherent architecture. With the systematic design,
finding the best configuration to maximize redundancy-elimination benefits becomes part of the CNN
training process, seamlessly integrated as part of the backward propagation. Based on the design, we
are able to investigate transient redundancy elimination for CNN in a principled way, providing a
rigorous proof of the robustness and convergence for TREC, and an intuitive comparative analysis of
the computational complexity.

TREC is compatible with both forward and backward propagations, enabling a plug-and-play replace-
ment for convolutional layers in mainstream CNNs without any additional effort. Through a novel
LSH back-propagation mechanism, the optimal parameters of TREC are automatically determined;
they remain deterministic, clearing the threat to robust performance that hampers practical adoptions
of the existing solutions.

We evaluate TREC on diverse popular CNNs, CifarNet [1], SqueezeNet (with and without complex
bypass) [15], ZfNet [32], and ResNet-34[12] on a microcontroller (MCU). In particular, ZfNet is
preprocessed with channel pruning to meet the strict memory constraints of MCU. Experiments
show that by removing 96.25% transient redundancy, TREC achieves an average of 4.40× speedup
compared to the conventional convolution operator. When applied to the full neural networks, TREC
achieves an average of 3.51× speedup with virtually no accuracy loss.

2 Related Work

Extensive studies have been conducted to eliminate the lasting redundancy of CNNs. Factorization [4,
5, 6, 20, 22, 30, 33], pruning [9, 10, 13, 23, 24, 35, 36], and quantization [16, 18, 27, 34] techniques
are some of the important methods. They exploit the redundancy contained in the CNN parameters.

Transient redundancy elimination is complementary to lasting redundancy elimination, dedicated to
detecting and removing redundancy from input images or activation maps. It is more challenging
to do as it has to happen during online inference. Such redundancy can be further categorized into
temporal redundancy (e.g., similarities between adjacent video frames) and spatial redundancy (e.g.,
similar tiles within an image). Prior studies [7, 11, 19, 31, 37, 38] have paid attentions mostly to
temporal similarities between adjacent frames. Deep Reuse [26] is the main method proposed before
for detecting and eliminating spatial redundancy within an image for CNN. It takes place as extra
operations outside CNN, using Locality-Sensitive Hashing (LSH) with some random hashing vectors
for online data clustering. Such an ad-hoc treatment causes important uncertainty about the impact of
the clustering errors on the CNN performance. Experimental results show that Deep Reuse causes
significant (e.g., 5%) fluctuations on CNN accuracy (detailed in Section 5).

3 TREC

In this section, we elaborate on the design of our transient redundancy elimination-based convolution.
First, we present the architecture of TREC and how it operates in the forward pass. Then, we
delve into the key challenge in the creation of TREC, how to make back-propagation function on
TREC-based CNNs.

3.1 Basic TREC Architecture

The basic architecture of our proposed TREC is shown in Figure 1. TREC comprises three components
in series on top of Im2col+GEMM based convolution: LSH-based clustering that reduces the size of
the input to the conversion, matrix multiplication of weights and the compressed input, and a recovery
step that restores results to the original GEMM output sizes.

2

�

����
Binary

Mapping
Bindec

Mapping
0 1 0 1
0 0 1 1............

5
3... ��

Clustering

LSH-based Clustering

�

�� �
Recovery

��� ������� ��

Binary
Approximation

Bindec
Conversion

Forward
Backward

Figure 1: Architecture design of TREC. "⊗" denotes matrix multiplication.

Recall that in Im2col+GEMM based convolution, the input feature maps and filters are unfolded
to an input matrix X and a weight matrix W , and then the convolution is materialized as a matrix
multiplication. At a high level, TREC uses Locality-Sensitive Hashing (LSH) to group vectors in
the input matrix. It has four steps. First, it applies a hash function matrix Hash to X . Second, it
performs a simple element-wise binary mapping to obtain a bit matrix. Third, each row vector of
the bit matrix is converted to a decimal value by bindec mapping (i.e., a mapping from binary to
decimal). These integer values indicate the cluster IDs of the neuron vectors in X . Fourth, the input
matrix X reduces to Xc, which is composed of the centroids of clusters. In this way, the size of input
matrix is significantly reduced, lowering the computational complexity of the subsequent matrix
multiplication. Finally, in the recovery step, vectors in the same cluster reuse the computation results
of the corresponding centroids to obtain the final result Y .

3.2 Breaking the Back-Propagation Barriers for TREC

The key challenges for building a TREC-based CNN are two. The first is in making back-propagation
work with TREC. It is challenging because of the discrete nature of the LSH-based clustering in
TREC. The second is to understand the impact of TREC on the convergentability of CNN.

We address the first challenge in this section and address the second challenge in Section 4. At a
high level, our strategy consists of two key components. First, we replace the piecewise mappings
in TREC with similar-shaped functions as binary approximation approaches. Second, we propose a
bindec conversion algorithm to resolve the complexities in obtaining centroids. Before explaining
them, we first give a closer examination of the operations in the forward pass of the basic TREC,
which will help the follow-up explanations.

A Closer Look at Redundancy Elimination in the Forward Pass. Figure 2 illustrates the redun-
dancy elimination in the forward pass of the basic TREC. Specifically, let X ∈ R4×6 be an unfolded
input matrix after Im2col. TREC first slices X into L groups vertically (L = 2 in Figure 2 Left),
so each sub-matrix is of size 4 × 3. The slicing reduces vector length which can often allow the
clustering to identify more similar vectors [25]. Applying the LSH clustering to each sub-matrix
produces the centroid matrix Xc.

LSH is chosen because as a lightweight online clustering method, it produces good clustering results
without incurring excessive overhead. Figure 2 Right shows more details of LSH clustering with an
example. X1 is the first sub-matrix of X in Figure 2 Left. For each input vector x in X1, it is hashed
through the following function parameterized with a random vector v:

hv(x) =

{
1 if v · x > 0
0 if v · x ≤ 0

(3.1)

First, X1 is transformed into a projected matrix with H = 2 random hash vectors (i.e., 2 column
vectors of the hash matrix). Second, the projected vectors are mapped to bit vectors with 2H

possibilities, as defined by Eq. 3.1. Third, the bindec rule converts each bit vector to an integer value,
which can be used as the cluster ID of vector x. In this way, similar vectors have a high chance of
being mapped to the same cluster. Finally, each vector in Xc is computed using vectors with the
same cluster ID. Note that in practice, H is much smaller than the length of neural vectors, so the
overhead introduced by LSH is low.

Binary Approximation. To solve the problem of discontinuity in binary mapping during back-
propagation, we introduce binary approximation to make it differentiable. The binary mapping
handles the projected matrix in an element-wise manner, which acts as a binary classification that sets

3

4

① LSH

×

② Recovery

𝐗 𝐖 𝐘
𝐗𝐜 𝐘𝐜

=
𝑥"" 𝑥"#
𝑥#"
𝑥$"
𝑥%"

𝑥##
𝑥$#
𝑥%#

𝑥!!"
𝑥#!" 𝑥##"

𝑥!#" 𝑦!!"
𝑦#!" 𝑦##"

𝑦!#"
𝑦!!" 𝑦!#"
𝑦#!"
𝑦!!"
𝑦!!"

𝑦!#"
𝑦##"
𝑦##"

𝐗𝟏 Hash Projected Bit Cluster ID
1 2 3
0 0 1
0 2 1
1 3 2

-1 1
1 2
0 -1

=

1 2
0 -1
2 3
2 5

1 1
0 0
1 1
1 1

Binary
Mapping

𝒉𝒗

3
0
3
3

Bindec
Mapping

① ②
×

Figure 2: Left: The illustration of redundancy elimination. In matrix X , vectors in the same color
belong to the same cluster. Right: An illustration of LSH. X1 is the first sub-matrix of X on the left.

elements greater than zero to one, and otherwise to zero. To that end, we employ a sigmoid function
as a substitute of the binary mapping:

S(x) =
1

1 + e−a×(x−b)
, (3.2)

where a denotes the slope and b denotes the abscissa value of the central point of the curve. The
sigmoid function suits TREC because it is 1) monotonic and bounded; 2) smooth and differentiable.
Meanwhile, the sigmoid function offers a parameterized way to materialize the effects of binary
mapping for TREC. The parameters a and b in the sigmoid function are hyperparameters determined
empirically. When setting them, the rationale worth mentioning is that the value of a shall be large
such that as few points as possible appear at the mid-slope of the sigmoid function, which would
allow positive and negative numbers to approach one and zero respectively. And the value of b shall
shift the function slightly to the right, which would allow the value at x = 0 to approach zero. The
bit vectors can be then approximated by an application of such a sigmoid function to the projected
matrix.

Bindec Conversion. Another step that impedes back-propagation for TREC is bindec mapping,
that is, the rightmost step in the example in Figure 2, which converts every binary vector into its
corresponding integer value. To make this process differentiable, we design a transformation matrix
as follows: 

2H−1/1 2H−1/2 · · · 2H−1/2H

...
...

. . .
...

21/1 21/2 · · · 21/2H

20/1 20/2 · · · 20/2H

 ∈ RH×2H . (3.3)

Eq. 3.3 shows that elements in the same row of the transformation matrix have the same numerator,
and elements in the same column have the same denominator. Horizontally, the denominators increase
from 1 to 2H . Vertically, the numerators are [2H−1, ..., 21, 20] from top to bottom, which are the
coefficients when converting a binary number to decimal.

21/1 21/2 21/3 21/4

20/1 20/2 20/3 20/4

Bit
1 1
0 0
1 1
1 1

× =
4 2 4/3 1
1 1/2 1/3 1/4
4 2 4/3 1
4 2 4/3 1

Transformation
(� × ��)

+
0 1
0 1
0 1
0 1

Gaussian
0 0 0 1
1 0 0 0
0 0 0 1
0 0 0 1

Quotient

Forward information

21/1 21/4
20/1 20/4× =

4 1
1 1/4
4 1
4 1

Gaussian
0 1
1 0
0 1
0 1

Index

Divide
��

0 0 0 1/3
1 0 0 0
0 0 0 1/3
0 0 0 1/3

Average (Avg)

Divide
��

0 1/3
1 0
0 1/3
0 1/3

1 1
0 0
1 1
1 1

+
0 1
0 1
0 1
0 1

Figure 3: The overall idea of constructing the Avg matrix.

The overall idea of bindec conversion is shown in Figure 3, which follows the example of Figure 2.
First, we add 1 to the rightmost column of the bit matrix. In this way, the range of the integers
changes from [0, 2H − 1] to [1, 2H], which is consistent with the denominators of the transformation
matrix. The result matrix is then multiplied with the transformation matrix, which can be seen as two
steps: 1) multiply the bit vectors with the numerators of the transformation matrix’s column vectors
to obtain integer values; 2) divide the integer values by the denominators of the column vectors. As a

4

result, in the quotient matrix, for row i where vector xi is located, Quotienti,j = 1 appears only at the
position where the column number j equals xi’s cluster ID. For example, in Figure 3, the bit vector
in the second row (i.e., row 1) is [0, 0], and the cluster ID is 0. In row 1 of the quotient matrix, only
column 0 has 1, i.e., Quotient1,0 = 1.

The method can successfully do the mapping. But as H increases, the dimension of the transformation
matrix increases exponentially, resulting in a huge memory waste. To ease the space and computation,
we apply the above process only in the backward pass, while the forward pass still uses binary and
bindec mappings. This means that the results of the forward pass such as cluster IDs, the number
of vectors per cluster (denoted as Nc), and the number of clusters (denoted as C), can be reused by
back-propagation. Therefore, we can directly construct a transformation matrix of size H × C, where
each column represents a known cluster ID that is derived from the forward calculation. As shown in
the lower part of Figure 3, the use of forward information can significantly avoid space waste.

Now, we can obtain an index matrix to indicate the vector-cluster relationship. We can do that by
applying a element-wise function to the quotient matrix, which gives 1 if the element is 1 and 0
otherwise. Such a function is however not differentiable. To solve this problem, we introduce an
impulse-like Gaussian function of the following form:

G(x) = e−
(x−1)2

2σ2 , (3.4)

It is a symmetrical bell-shaped curve centered at x = 1, with σ controlling its width. With a small
σ, the Gaussian function can be used to approximate the desired index matrix. Then, we divide the
index matrix by the number of vectors per cluster Nc, and we obtain an average matrix denoted as
Avg. Finally, the cluster centroids can be calculated as follows:

Xc = AvgT ·X. (3.5)

For the example in Figure 2, we get the cluster centroids as follows:

[
1
3

0 1
3

1
3

0 1 0 0

]
·

1 2 3
0 0 1
0 2 1
1 3 2

 =

[
2
3

7
3

2

0 0 1

]
(3.6)

Parameter Setting. TREC uses Sigmoid and Gaussian functions to simulate the mappings. As
mentioned, TREC needs the range of function parameters to meet certain conditions, such as using a
small σ to narrow the width of the Gaussian function. However, fixing a σ value is subject to gradient
explosion, resulting in a large gradient variance and convergence difficulties. Therefore, we propose
a solution that dynamically sets σ based on H .

0.6 0.8 1 1.2 1.4 x
-6
-4
-2
0
2
4
6

y

(0.9, 6.065)

(1.1, -6.065)

Gaussian (=0.1) Derivative of Gaussian

Figure 4: Gaussian function and its derivative
with σ = 1.

We use Figure 4 to illustrate the gradient explosion
problem. The curves are of a Gaussian function
with σ = 1 and its derivative. We can see that the
derivative function varies widely on both sides of
x = 1, and its maximum and minimum values occur
at x = 1± σ. The value range of the derivative func-
tion increases as σ increases. Therefore, manually
setting a fixed σ has a high chance of incurring a
large gradient variance.

To address this problem, we first analyze the quotient
matrix. According to the rules of the transformation
matrix, the quotient matrix takes values in the range [1

2H
, 2H], and the difference is at least 1

2H
.

Moreover, the ith vector has Quotienti,j = 1 when the cluster ID is equal to column j. Based on the
observations, we avoid producing large gradients simply by ensuring

σ <
1

k · 2H
and k > 1. (3.7)

Consequently, the Gaussian function not only provides an ideal approximation of the index matrix,
but also ensures the stability of the training under any H value.

5

4 Theoretical Analysis

In this section, we provide a theoretical analysis of TREC in terms of robustness, convergence, and
complexity. All proofs are available in the Appendix.

4.1 Robustness

Neural networks are sensitive to inputs [8, 28]. In practice, a small perturbation of the input image
can misdirect the neural network and significantly decrease its classification accuracy. To prove
that TREC does not impair the stability of the convolutional layer, we use the Lipschitz constant,
which is commonly used to assess the robustness of neural networks, to upper bound the relationship
between the input perturbation and output variation [29]. In the following, we use ∥X∥∞ to denote
the L∞-norm of the matrix space Rm×n.
Definition 1. A function f : Rm1×n1 →Rm2×n2 is called Lipschitz continuous if there exists a constant
L > 0 such that

∀X,Y ∈ Rm×n, ∥f(X)− f(Y)∥∞ ≤ L∥X − Y ∥∞. (4.1)

The smallest L that makes the previous inequality true is called the Lipschitz constant of f and can be
denoted as L(f).

Suppose Conv : X→X ·W is a conventional convolution operator, and TREC : X→Avg ·X ·W is our
proposed method. Recall the description of the Avg matrix in Section 3.2 and Eq. 3.6;

∑
i Avgi,j ≤ 1

is satisfied for any column j. Combining Definition 1 with the above discussion, we have:
L(Conv) = ∥W∥∞, L(TREC) = ∥W ⊗AvgT ∥∞ ≤ ∥W∥∞, (4.2)

where ⊗ denotes the Kronecker product. In summary, under the same network configuration, the
Lipschitz constant of TREC is no larger than that of the conventional convolution. That is to say,
TREC has the ability to maintain the robustness of convolutional layers.

4.2 Convergence

In this section, we provide a theoretical analysis of the convergence of TREC-equipped CNNs. Ana-
lyzing the convergence of the above CNNs directly is difficult, since the specific CNN architectures
are unknown except for the convolutional layers. Instead, we address this problem by building a
connection with stochastic gradient descent, and prove that the proposed method is guaranteed to
converge under reasonable assumptions. In the following, we use ∥x∥2 to denote the L2-norm of the
Hilbert space Rn.

We assume a CNN network with R TREC layers and T other layers. Without loss of generality,
we use W = [W1, . . . ,WR+T] ∈ Rd1 to denote the weights of all layers, and H = [H1, . . . ,HR] ∈ Rd2

to denote the hash functions of all convolutional layers. In accordance with the method [2], we
represent a sample (or set of samples) as a random seed ξ, and refer to the loss for a given (W,H, ξ) as
f(W,H; ξ). In addition, given a dataset with n samples, we refer to the objective function F : RD → R

as either F (W,H) = E[f(W,H; ξ)] or F (W,H) =
1

n

∑n
i=1 fi(W,H).

Following the stochastic gradient descent, we define the parameter update rule at iteration k as:
Wk+1 ←Wk − αk · g(Wk, Hk; ξk), Hk+1 ← Hk − αk · q(Wk, Hk; ξk), (4.3)

where αk denotes the stepsize, g(Wk, Hk; ξk) and q(Wk, Hk; ξk) represent the gradients of the loss
function with respect to Wk and Hk separately, which can be the stochastic gradients or the mean
gradients of a mini-batch:

g(Wk, Hk; ξk) =

∇fW (Wk, Hk; ξk)

1
nk

nk∑
i=1

∇fW (Wk, Hk; ξk)
, q(Wk, Hk; ξk) =

∇fH(Wk, Hk; ξk)

1
nk

nk∑
i=1

∇fH(Wk, Hk; ξk).
(4.4)

Now we summarize the key assumptions required to establish our results.
Assumption 1 (Lipschitz-continuous objective gradients). The objective function F : RD → R
is continuously differentiable and the partial derivatives of F , namely, ∇FW : Rd1 → Rd1 and
∇FH : Rd2 → Rd2 , are Lipschitz continous with Lipschitz constants L > 0, i.e.,

∥∇FW (W,H)−∇FW (W,H)∥2 ≤ L∥W −W∥2, for all {W,W} ⊂ Rd1 ,

∥∇FH(W,H)−∇FH(W,H)∥2 ≤ L∥H −H∥2, for all {H,H} ⊂ Rd2 .
(4.5)

6

Assumption 1 ensures that the partial derivatives of F do not change arbitrarily fast with respect to
the parameters, thus well indicating how far to move to decrease F . To move forward, we denote the
variances of g(Wk, Hk; ξk) and q(Wk, Hk; ξk) as:

Vξk [h(Wk, Hk; ξk)] := Eξk

[
∥h(Wk, Hk; ξk)∥22

]
−

∥∥Eξk [h(Wk, Hk; ξk)]
∥∥2

2
, h ∈ {g, q}. (4.6)

Assumption 2 (First and second moment limits). The objective function and the stochastic gradient
algorithm satisfy the following conditions:

(a) The sequence of iterations {(Wk, Hk)} is contained in an open set over which F is bounded
below by a scalar Finf .

(b) There exist scalars µG ≥ µ > 0 such that, for all k ∈ N,

∇FW (Wk, Hk+1)
TEξk [g(Wk, Hk; ξk)] ≥ µ∥∇FW (Wk, Hk)∥22, (4.7a)

∇FH(Wk, Hk)
TEξk [q(Wk, Hk; ξk)] ≥ µ∥∇FH(Wk, Hk)∥22, (4.7b)
∥Eξk [g(Wk, Hk; ξk)]∥2 ≤ µG∥∇FW (Wk, Hk)∥2, (4.7c)
∥Eξk [q(Wk, Hk; ξk)]∥2 ≤ µG∥∇FH(Wk, Hk)∥2. (4.7d)

(c) There exist scalars M ≥ 0 and MV ≥ 0 such that, for all k ∈ N,

Vξk [g(Wk, Hk; ξk)] ≤M +MV ∥∇FW (Wk, Hk)∥22,
Vξk [q(Wk, Hk; ξk)] ≤M +MV ∥∇FH(Wk, Hk)∥22.

(4.8)

We first analyze the convergence with a fixed stepsize and prove that the CNNs equipped with TREC
can converge sub-linearly to the neighborhood of the critical points for the non-convex problem under
the above assumptions.
Theorem 1 (Fixed stepsize). Assume that Assumptions 1 and 2 hold, and the fixed stepsize is
αk = ᾱ for all k ∈ N satisfying 0 < ᾱ ≤ µ

LMG
. Then, the average-squared partial derivatives of F

corresponding to the stochastic gradient iterations satisfy the following inequality for all K ∈ N:

1

K

K∑
k=1

E
[
∥∇FW (Wk, Hk)∥22 + ∥∇FH(Wk, Hk)∥22

]
≤ 2ᾱLM

µ
+

2(F (W1, H1)− Finf)

Kµᾱ
. (4.9)

Therefore, the optimal solution we can obtain is dominated by 2ᾱLM

µ
. Further, we also prove the

convergence with a dimishing stepsize that meets the requirements in the study [2]:

lim
K→∞

K∑
k=1

αk = ∞ and lim
K→∞

K∑
k=1

α2
k < ∞. (4.10)

Theorem 2 (Dimishing stepsize). Assume that Assumptions 1 and 2 hold and the dimishing stepsize
sequence {αk} satisfies Eq. 4.10. Then, with AK :=

∑K
k=1 αk,

E
[

1
AK

K∑
k=1

αk

(
∥∇FW (Wk, Hk)∥22 + ∥∇FH(Wk, Hk)∥22

)]
≤ 2(F (W1,H1)−Finf)

µAk
+ 2LM

µAk

K∑
k=1

α2
k

K→∞−−−−→ 0.

(4.11)
Remark 1. Theorem 2 has shown the decaying of gradients ∥∇FW (Wk, Hk)∥2 and ∥∇FH(Wk, Hk)∥2
even with noise when the stepsize is dimishing. This is because the second condition in Eq. 4.10
implies the right-hand side of Eq. 4.11 to converge to a finite limit as K increases.

Theorems 1 and 2 prove convergence in the limit. Taking a step forward, we study the theoretical
bounds to understand the convergence of TREC-equipped CNNs in practical applications. According
to Eq. 4.9 and 4.11, as long as the practical application satisfies Assumptions 1 and 2, we can obtain a
theoretical upper bound of the sum of squared gradients without considering the limit. The relevance
of this theoretical upper bound to practical applications is reflected in the values of the constants
such as L, µ, M , and the specific setting of the learning rate. From Eqs. 4.5- 4.8, the constants
L, M , and MG = Mv + µ2

G, which are greater than 0, exist according to the L2-norm. Through
experimental verification, we find that the constant µ is always greater than 0 during the training
process and gradually converges to 1 with time, satisfying the sufficient direction assumption. We
present in Appendix B the trend of the constant µ.

7

4.3 Complexity

We show in Table 1 an intuitive comparative analysis of two major complexity metrics. The complexity
of binary and bindec mappings are not taken into account because they are parameterless and
insignificant compared with other computational overheads. For the parameter count, TREC exceeds
the conventional convolution by a hash matrix of O(L ·H) size, with trivial KB-level space occupancy.
For the computation complexity, we define redundancy ratio: rt = 1−Nc/N as the size reduction
of the input matrix to indicate the fraction of transient redundancy within input images or activation
maps. As long as H < M · rt is satisfied, TREC can yield computational benefits. In practical
validation (Section 5.2), we notice that the reduction of transient redundancy of a single convolutional
layer reaches up to 96.25%, which brings confidence to the advantages of TREC.

Table 1: Parameter counts and FLOPs for conventional GEMM-based convolution and TREC. The
input and weight matrices unfolded by Im2col are of size N ×K and K ×M . The hash matrix of
TREC is of size L×H . Nc denotes the number of clusters.

Parameters FLOPs

Conventional K ·M N ·K ·M

TREC K ·M + L ·H (H
M

+ 1− rt) ·N ·K ·M

5 Evaluation

5.1 Experimental Setup

Methodology. To demonstrate the efficacy of TREC on CNN inference acceleration, we first apply
TREC to single convolutional layers to measure single-layer speedups and accuracy. Second, we
apply TREC to the complete neural networks to measure end-to-end inference performance. Third,
we analyze the influence of different factors on performance, including the dynamic setting of the
Gaussian parameter, and the clustering configurations.

Platforms. As computation reduction is most needed on resource constrained devices, we fo-
cus our evaluation on Microcontrollers (MCU). Specifically, all inferences are performed on an
STM32F469NI MCU with 324KB SRAM and 2MB Flash, using the CMSIS-NN kernel optimized
for Arm Cortex-M devices [21]. All trainings are performed using PyTorch 1.10.1 (open-source
software with a BSD license) on a machine equipped with a 20-core 3.60GHz Intel Core i7-12700K
processor, 128GB of RAM, and an NVIDIA GeForce RTX A6000 GPU with 48 GB memory.

Workloads. We evaluate TREC with five compact CNNs that fit MCU, CifarNet [1], ZfNet [32],
SqueezeNet with and without complex bypass [15], and ResNet-34 [12]. Most trainings and inferences
are performed on CIFAR-10, while for ResNet, we use the downsampled ImageNet [3] with 64×64
resolution (since the original large images cause ResNet-34 to run out of MCU memory). All
networks are optimized by SGD. The learning rate starts from 0.001 and decreases by 0.1 every 15
epochs. The batch size, weight decay, and momentum are set to 256, 0.9, and 10−4, respectively, and
the maximal epoch is set to 100. The batch size at inference is 1 due to the stringent memory limit on
MCU. It is worth noting that ZfNet is preprocessed with channel pruning to meet the strict memory
constraints of MCU. It also allows us to see how well the transient redundancy elimination (TREC)
works in the presence of lasting redundancy elimination (pruning).

5.2 Single-Layer Performance

We report in Appendix C the single-layer speedups and accuracy loss achieved by replacing the
conventional convolution with TREC. For comparison, we also include the results from Deep
Reuse [26], a state-of-the-art method in avoiding transient redundancy in CNN. We have the following
observations. First, TREC detects and eliminates about 96.25% of the transient redundancy. Second,
TREC brings significant performance benefits for individual layers with an average speedup of 4.40×.
Especially for the SqueezeNet expand layers, TREC gets up to 18.66× speedup, indicating that
TREC is especially beneficial to computation-intensive layers. The speedup is lower than the ratio
of transient redundancy that TREC eliminates, due to the overhead introduced by the clustering.
Third, the influence on accuracy by TREC is small and mixed. When applied to some layers, it

8

may cause around 0.8% accuracy drop, but it may also give slight accuracy improvements when
applied to some other layers. TREC overall preserves the accuracy much better (about 3.33% on
average) than Deep Reuse does. Furthermore, the Conf. columns report the LSH configurations in
our experiments (Section 5.4 gives more details on the impacts of the hyperparameters L and H).
We also illustrate the impact of batch size on performance by measuring the redundancy ratio of a
single layer in Appendix C.2, which shows that TREC has strong redundancy removal ability at any
batch size, and that this ability increases with batch size. All above results demonstrate that TREC
can exert its full potential, achieving significant speedups while minimizing the accuracy loss.

5.3 End-to-End Performance

Table 2 compares the end-to-end performance brought by TREC, Deep Reuse, and conventional
convolution. Given the inherent randomness of Deep Reuse, we present its result interval of 150 runs.
Note that after channel pruning, the baseline accuracy of ZfNet is slightly lower than its standard
accuracy of 83%, but the model size is 7.6% of the original model, which can well meet the memory
constraint of MCU.

Table 2: End-to-end performance comparison.
Network Conv Method Average Time per Image (ms) Top-1 Accuracy (%)

CifarNet
Conventional 217.32 78.2
Deep Reuse 154.44 73.2 ∼ 76.1

TREC 153.92 76.5

ZfNet
Conventional 3557.32 80.1
Deep Reuse 814.03 72.5 ∼ 76.6

TREC 814.01 78.9

Vanilla SqueezeNet
Conventional 1639.51 83.5
Deep Reuse 328.97 79.8 ∼ 81.9

TREC 327.90 83.0

SqueezeNet + Complex Bypass
Conventional 1998.86 85.3
Deep Reuse 543.71 80.5 ∼ 83.1

TREC 544.03 84.6

ResNet-34
(ImageNet-64×64)

Conventional 4242.77 52.6
Deep Reuse 1379.26 46.7 ∼ 49.9

TREC 1378.75 52.2

Several findings can be drawn from Table 2. First, compared to the conventional convolution, TREC
achieves 3.51× speedup on average with minor (about 0.7%) accuracy loss. Second, TREC and
Deep Reuse have comparable inference time, but TREC is superior in terms of stable performance
and higher accuracy. Third, TREC cuts the accuracy loss of Deep Reuse from as much as 7.6% to
0.4∼1.7%, an up to 84% reduction.

5.4 Configuration Analysis

Dynamic and Static σ of Gaussian. In this set of experiments, we measure the effect of the strategy
proposed in Section 3.2 to dynamically set σ based on H . To eliminate the influence of irrelevant
factors, we choose the most computation-intensive convolutional layers among four networks and
replace them with TREC (the results on ResNet-34 are presented in Appendix D). As shown in
Figure 5, we compare our proposed dynamic strategy with the static approach that manually sets
a fixed σ value of 10−4. As seen, the accuracy of the models using a fixed σ drops sharply after
H = 12, and it shows a decreasing trend as H increases. Recalling the discussion in Section 3.2,
when H > 12, we have σ = 10−4 > 1

k·2H . Therefore, the gradient of the hash matrix tends to fall
into the maximum value range of the Gaussian derivatives, resulting in a large gradient variance
and difficulty in model convergence. Thus, our dynamic σ strategy can effectively guarantee the
performance.

Impacts of Hyperparameters L and H Two hyperparameters in TREC are 1) L: the width of the
sub-matrices obtained by slicing, and 2) H: the number of hash functions. In application of TREC,
they can be chosen empirically like other CNN hyperparameters. In this part, we provide some
observations on their impacts. Figure 6 shows the accuracy of TREC, Deep Reuse, and conventional

9

5 10 15 20
H

0.4

0.6

0.8

A
cc

ur
ac

y
CifarNet(2nd)

Dynamic
Static(10 4)

5 10 15 20
H

0.6

0.7

0.8

ZfNet(2th)
Dynamic
Static(10 4)

5 10 15 20
H

0.4

0.6

0.8

SqueezeNet(4th)
Dynamic
Static(10 4)

Figure 5: Effects of dynamic and static settings of σ.

convolution under different L and H configurations. The upper part is the result of changing H with
fixed L, and the range of H is set to 5 to 20. The lower part is the result of changing L with fixed H ,
and the range of L changes according to the input and weight dimensions of different layers. We have
the following observations: 1) TREC and Deep Reuse show a consistent trend of accuracy, which
goes up as H increases, and goes down as L increases. 2) TREC has robust and stable inference
performance, which is preferable to the non-deterministic Deep Reuse. 3) TREC is more inclined to
stay at high accuracy, proving its ability to mine richer data features.

5 10 15 20
H

0.65

0.70

0.75

A
cc

ur
ac

y

CifarNet(2nd)
Regular
TREC
Deep Reuse

5 10 15 20
H

0.72

0.74

0.76

0.78

0.80

ZfNet(2nd)
Regular
TREC
Deep Reuse

5 10 15 20
H

0.80

0.82

0.84

SqueezeNet(4th)
Regular
TREC
Deep Reuse

4 10 25 50 100 320800
L

0.6

0.7

0.8

A
cc

ur
ac

y

CifarNet(2nd)
Regular
TREC
Deep Reuse

4 8 12 16 24 32 48 96160240480
L

0.60
0.65
0.70
0.75
0.80

ZfNet(2nd)
Regular
TREC
Deep Reuse

4 6 9 16 24 36 72 144
L

0.75

0.80

0.85

SqueezeNet(4th)
Regular
TREC
Deep Reuse

Figure 6: Influence of LSH parameter configuration on accuracy.

6 Conclusion

In this paper, we propose a principled approach to detecting and avoiding transient redundancy.
It introduces a new form of convolutional operator called TREC, which integrates the redundancy
avoidance as well as the optimal configuration determination into CNN as an intrinsic part of the
CNN architecture. We experimentally and theoretically demonstrate the effectiveness of TREC. This
new approach may open many new possibilities for CNN on resource-constrained devices. As a
foundational research outcome, it is neutral in terms of societal impacts. A limitation of this study is
that it focuses on CNNs, but transient redundancy may also exist in other types of Neural Networks
as well, exploration of which is left for future to explore.

Acknowledgments and Disclosure of Funding

This material is supported by the National Natural Science Foundation of China (No. 62072458,
62172419, 61732014, and 62072459), and is based upon work supported by the National Science
Foundation (NSF) under Grants CCF-1703487, CCF-2028850 and CNS-1717425. Any opinions,
findings, and conclusions or recommendations expressed in this material are those of the authors and
do not necessarily reflect the views of NSF. Feng Zhang is the corresponding author of this paper.

10

References
[1] CifarNet. http://places.csail.mit.edu/deepscene/small-projects/TRN-pytorch-pose/

model_zoo/models/slim/nets/cifarnet.py, 2020.

[2] Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale machine learning.
Siam Review, 60(2):223–311, 2018.

[3] Patryk Chrabaszcz, Ilya Loshchilov, and Frank Hutter. A downsampled variant of imagenet as an alternative
to the cifar datasets. arXiv preprint arXiv:1707.08819, 2017.

[4] Misha Denil, Babak Shakibi, Laurent Dinh, Marc’Aurelio Ranzato, and Nando De Freitas. Predicting
parameters in deep learning. Advances in neural information processing systems, 26, 2013.

[5] Emily L Denton, Wojciech Zaremba, Joan Bruna, Yann LeCun, and Rob Fergus. Exploiting linear structure
within convolutional networks for efficient evaluation. Advances in neural information processing systems,
27, 2014.

[6] Haisong Ding, Kai Chen, Ye Yuan, Meng Cai, Lei Sun, Sen Liang, and Qiang Huo. A compact CNN-
DBLSTM based character model for offline handwriting recognition with Tucker decomposition. In 2017
14th IAPR International Conference on Document Analysis and Recognition (ICDAR), volume 1, pages
507–512. IEEE, 2017.

[7] Christoph Feichtenhofer, Axel Pinz, and Andrew Zisserman. Detect to track and track to detect. In
Proceedings of the IEEE international conference on computer vision, pages 3038–3046, 2017.

[8] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples.
arXiv preprint arXiv:1412.6572, 2014.

[9] Song Han, Huizi Mao, and William J Dally. Deep Compression: Compressing Deep Neural Networks with
Pruning, Trained Quantization and Huffman Coding. arXiv preprint arXiv:1510.00149, 2015.

[10] Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for efficient
neural network. Advances in neural information processing systems, 28, 2015.

[11] Wei Han, Pooya Khorrami, Tom Le Paine, Prajit Ramachandran, Mohammad Babaeizadeh, Honghui Shi,
Jianan Li, Shuicheng Yan, and Thomas S Huang. Seq-NMS for Video Object Detection. arXiv preprint
arXiv:1602.08465, 2016.

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

[13] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural networks. In
Proceedings of the IEEE international conference on computer vision, pages 1389–1397, 2017.

[14] Zhouyuan Huo, Bin Gu, and Heng Huang. Training neural networks using features replay. Advances in
Neural Information Processing Systems, 31, 2018.

[15] Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J Dally, and Kurt Keutzer.
SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size. arXiv preprint
arXiv:1602.07360, 2016.

[16] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard, Hartwig
Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for efficient integer-
arithmetic-only inference. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 2704–2713, 2018.

[17] Dinesh Jayaraman and Kristen Grauman. Slow and steady feature analysis: higher order temporal coherence
in video. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
3852–3861, 2016.

[18] Sangil Jung, Changyong Son, Seohyung Lee, Jinwoo Son, Jae-Joon Han, Youngjun Kwak, Sung Ju Hwang,
and Changkyu Choi. Learning to quantize deep networks by optimizing quantization intervals with task
loss. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
4350–4359, 2019.

[19] Kai Kang, Hongsheng Li, Junjie Yan, Xingyu Zeng, Bin Yang, Tong Xiao, Cong Zhang, Zhe Wang, Ruohui
Wang, Xiaogang Wang, et al. T-CNN: Tubelets with Convolutional Neural Networks for Object Detection
from Videos. IEEE Transactions on Circuits and Systems for Video Technology, 28(10):2896–2907, 2017.

11

http://places.csail.mit.edu/deepscene/small-projects/TRN-pytorch-pose/model_zoo/models/slim/nets/cifarnet.py
http://places.csail.mit.edu/deepscene/small-projects/TRN-pytorch-pose/model_zoo/models/slim/nets/cifarnet.py

[20] Yong-Deok Kim, Eunhyeok Park, Sungjoo Yoo, Taelim Choi, Lu Yang, and Dongjun Shin. Compression
of deep convolutional neural networks for fast and low power mobile applications. arXiv preprint
arXiv:1511.06530, 2015.

[21] Liangzhen Lai, Naveen Suda, and Vikas Chandra. CMSIS-NN: Efficient Neural Network Kernels for Arm
Cortex-M CPUs. arXiv preprint arXiv:1801.06601, 2018.

[22] Vadim Lebedev, Yaroslav Ganin, Maksim Rakhuba, Ivan Oseledets, and Victor Lempitsky. Speeding-up
Convolutional Neural Networks Using Fine-tuned CP-Decomposition . arXiv preprint arXiv:1412.6553,
2014.

[23] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning Filters for Efficient
ConvNets. arXiv preprint arXiv:1608.08710, 2016.

[24] Zhenhua Liu, Jizheng Xu, Xiulian Peng, and Ruiqin Xiong. Frequency-domain dynamic pruning for
convolutional neural networks. Advances in neural information processing systems, 31, 2018.

[25] Lin Ning, Hui Guan, and Xipeng Shen. Adaptive Deep Reuse: Accelerating CNN training on the fly. In
2019 IEEE 35th International Conference on Data Engineering (ICDE), pages 1538–1549. IEEE, 2019.

[26] Lin Ning and Xipeng Shen. Deep Reuse: streamline CNN inference on the fly via coarse-grained
computation reuse. In Proceedings of the ACM International Conference on Supercomputing, pages
438–448, 2019.

[27] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. XNOR-Net: ImageNet
Classification Using Binary Convolutional Neural Networks. In European conference on computer vision,
pages 525–542. Springer, 2016.

[28] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, and
Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

[29] Aladin Virmaux and Kevin Scaman. Lipschitz regularity of deep neural networks: analysis and efficient
estimation. Advances in Neural Information Processing Systems, 31, 2018.

[30] Peisong Wang and Jian Cheng. Accelerating convolutional neural networks for mobile applications. In
Proceedings of the 24th ACM international conference on Multimedia, pages 541–545, 2016.

[31] Fanyi Xiao and Yong Jae Lee. Video object detection with an aligned spatial-temporal memory. In
Proceedings of the European Conference on Computer Vision (ECCV), pages 485–501, 2018.

[32] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In European
conference on computer vision, pages 818–833. Springer, 2014.

[33] Xiangyu Zhang, Jianhua Zou, Kaiming He, and Jian Sun. Accelerating very deep convolutional networks for
classification and detection. IEEE transactions on pattern analysis and machine intelligence, 38(10):1943–
1955, 2015.

[34] Aojun Zhou, Anbang Yao, Yiwen Guo, Lin Xu, and Yurong Chen. Incremental Network Quantization:
Towards Lossless CNNs with Low-Precision Weights. arXiv preprint arXiv:1702.03044, 2017.

[35] Hao Zhou, Jose M Alvarez, and Fatih Porikli. Less is more: Towards compact CNNs. In European
conference on computer vision, pages 662–677. Springer, 2016.

[36] Michael Zhu and Suyog Gupta. To prune, or not to prune: exploring the efficacy of pruning for model
compression. arXiv preprint arXiv:1710.01878, 2017.

[37] Xizhou Zhu, Yujie Wang, Jifeng Dai, Lu Yuan, and Yichen Wei. Flow-guided feature aggregation for video
object detection. In Proceedings of the IEEE international conference on computer vision, pages 408–417,
2017.

[38] Xizhou Zhu, Yuwen Xiong, Jifeng Dai, Lu Yuan, and Yichen Wei. Deep feature flow for video recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 2349–2358,
2017.

[39] Will Zou, Shenghuo Zhu, Kai Yu, and Andrew Ng. Deep learning of invariant features via simulated
fixations in video. Advances in neural information processing systems, 25, 2012.

12

Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes] See Section 5.1.

• Did you include the license to the code and datasets? [No] The code and the data are
proprietary.

• Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] We state them at the end of
Section 6.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] As stated
in Section 6, our work is a general algorithm aiming at accelerating CNN inference
and belongs to a foundational research; its societal impacts are neutral.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Section 4.
(b) Did you include complete proofs of all theoretical results? [Yes] See Section 4 and

appendix A.

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] We include
them in the supplemental material.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Section 5.1.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] Considering the randomness within each method, we
show in Section 5 the result interval or average value for 150 runs.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Section 5.1.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes]
(e) Did you discuss whether the data you are using/curating contains personally identifi-

able information or offensive content? [N/A] The Cifar-10 dataset does not contain
personally identifiable information or offensive content.

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

13

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

14

A Proofs

Lemma 1. Assume that Assumptions 1 and 2 hold, the iterations satisfy the following inequality for
all k ∈ N:

Eξk [F (Wk+1, Hk+1)]− F (Wk, Hk) ≤ −(µ−
1

2
αkLMG)αk

[
∥∇FW (Wk, Hk)∥22 + ∥∇FH(Wk, Hk)∥22

]
+ α2

kLM.
(A.1)

Proof. Under Assumption 1, for any {W, W̃} ∈ Rd
1 and {H, H̃} ∈ Rd

2, one obtains
F (W,H)− F (W̃ , H̃) =

(
F (W,H)− F (W̃ ,H)

)
+

(
F (W̃ ,H)− F (W̃ , H̃)

)
=

∫ 1

0

∂F
(
W̃ + t(W − W̃), H

)
∂t

dt+

∫ 1

0

∂F
(
W̃ , H̃ + t(H − H̃)

)
∂t

dt

=

∫ 1

0

∇FW

(
W̃ + t(W − W̃), H

)T
(W − W̃)dt+

∫ 1

0

∇FH

(
W̃ , H̃ + t(H − H̃)

)T
(H − H̃)dt

= ∇FW (W̃ ,H)T (W − W̃) +

∫ 1

0

[
∇FW (W̃ + t(W − W̃), H)−∇FW (W̃ ,H)

]T
(W − W̃)dt

+∇FH(W̃ , H̃)T (H − H̃) +

∫ 1

0

[
∇FH(W̃ , H̃ + t(H − H̃))−∇FH(W̃ , H̃)

]T
(H − H̃)dt

≤ ∇FW (W̃ ,H)T (W − W̃) +

∫ 1

0

L∥t(W − W̃)∥2∥W − W̃∥2dt

+∇FH(W̃ , H̃)T (H − H̃) +

∫ 1

0

L∥t(H − H̃)∥2∥H − H̃∥2dt

≤ ∇FW (W̃ ,H)T (W − W̃) +∇FH(W̃ , H̃)T (H − H̃) +
1

2
L
(
∥W − W̃)∥22 + ∥H − H̃∥22

)
.

Therefore, the iterations generated by stochastic gradient algorithm satisfy

F (Wk+1, Hk+1)− F (Wk, Hk) ≤ ∇FW (Wk, Hk+1)
T (Wk+1 −Wk) +

1

2
L∥Wk+1 −Wk∥22

+∇FH(Wk, Hk)
T (Hk+1 −Hk) +

1

2
L∥Hk+1 −Hk∥22

≤ −αk∇FW (Wk, Hk+1)
T g(Wk, Hk; ξk) +

1

2
α2
kL∥g(Wk, Hk; ξk)∥22

− αk∇FH(Wk, Hk)
T q(Wk, Hk; ξk) +

1

2
α2
kL∥q(Wk, Hk; ξk)∥22.

Taking expectations in these inequalities with respect to the distribution of ξk, and noting that
(Wk+1, Hk+1)—but not (Wk, Hk)—depends on ξk, we obtain

Eξk [F (Wk+1, Hk+1)]− F (Wk, Hk) ≤ −αk∇FW (Wk, Hk+1)
TEξk [g(Wk, Hk; ξk)]

− αk∇FH(Wk, Hk)
TEξk [q(Wk, Hk; ξk)]

+
1

2
α2
kLEξk

[
∥g(Wk, Hk; ξk)∥22

]
+

1

2
α2
kLEξk

[
∥q(Wk, Hk; ξk)∥22

]
Combine Assumption 2 with Definition 4.6, we have the second moment of g(Wk, Hk; ξk) and
q(Wk, Hk; ξk) satisfy

Eξk

[
∥g(Wk, Hk; ξk)∥22

]
≤M +MG∥∇FW (Wk, Hk)∥22,

Eξk

[
∥q(Wk, Hk; ξk)∥22

]
≤M +MG∥∇FH(Wk, Hk)∥22, with MG := MV + µ2

G ≥ µ2 > 0.

Therefore we have
Eξk

[
F (Wk+1, Hk+1)

]
− F (Wk, Hk) ≤ −µαk

[
∥∇FW (Wk, Hk)∥22 + ∥∇FH(Wk, Hk)∥22

]
+

1

2
α2
kL

[
M +MG

(
∥∇FW (Wk, Hk)∥22 + ∥∇FH(Wk, Hk)∥22

)]
≤ −(µ− 1

2
αkLMG)αk

[
∥∇FW (Wk, Hk)∥22 + ∥∇FH(Wk, Hk)∥22

]
+ α2

kLM.

15

Proof of Theorem 1

Proof. Taking the total expectation of Eq. A.1 and from the condition of 0 < ᾱ ≤ µ
LMG

,

E[F (Wk+1, Hk+1)]− E[F (Wk, Hk)] ≤ −(µ−
1

2
ᾱLMG)ᾱE

[
∥∇F (Wk, Hk)∥22 + ∥∇FH(Wk, Hk)∥22

]
+ ᾱ2LM

≤ −1

2
µᾱE

[
∥∇FW (Wk, Hk)∥22 + ∥∇FH(Wk, Hk)∥22

]
+ ᾱ2LM.

Summing both sides of this inequality for k ∈ {1, ...,K} and recalling Assumption 2 (a) gives

Finf − F (W1, H1) ≤ E[F (WK+1, HK+1)]− F (W1)

≤ −1

2
µᾱ

K∑
k=1

E
[
∥∇FW (Wk, Hk)∥22 + ∥∇FH(Wk, Hk)∥22

]
+Kᾱ2LM.

Rearranging above inequality and dividing further by K yields the result.

Proof of Theorem 2

Proof. The second condition in Eq. 4.10 ensures that lim
k→∞

αk = 0, meaning that without loss of

generality, we may assume that αkLMG ≤ µ for all k ∈ N. Taking the total expectation of Eq. A.1,
we obtain

E[F (Wk+1, Hk+1)]− E[F (Wk, Hk)] ≤ −(µ−
1

2
ᾱLMG)ᾱE

[
∥∇F (Wk, Hk)∥22 + ∥∇FH(Wk, Hk)∥22

]
≤ −1

2
µαkE

[
∥∇FW (Wk, Hk)∥22 + ∥∇FH(Wk, Hk)∥22

]
+ α2

kLM.

Summing both sides of this inequality for k ∈ {1, ...,K} and recalling Assumption 2(a) gives

Finf − F (W1, H1) ≤ E[F (WK+1, HK+1)]− F (W1, H1)

≤ −1

2
µ

K∑
k=1

αkE
[
∥∇FW (Wk, Hk)∥22 + ∥∇FH(Wk, Hk)∥22

]
+ LM

K∑
k=1

α2
k.

Rearranging the above inequality and dividing further by µ/2, we obtain
K∑

k=1

αkE
[
∥∇F (Wk, Hk)∥22 + ∥∇FH(Wk, Hk)∥22

]
≤ 2(F (W1, H1)− Finf)

µ
+

2LM

µ

K∑
k=1

α2
k.

Then, we get the desired result by dividing Ak on the both sides.

B Sufficient Direction Constant

Assumption 2(b) states that, in expectation, the vectors g(Wk, Hk; ξk) and q(Wk, Hk; ξk) are sufficient
descent directions for F from Wk and Hk with norms comparable to the norms of the gradients. It
guarantees that the model moves towards the descending direction of the loss function. Following the
experimental setup in Section 5.1, we demonstrate that the proposed method empirically satisfies
Assumption 2(b), and visualize in Figure 7 the sufficient direction constant µ for the (partial) convo-
lutional layers of the four models during the end-to-end training using TREC. For SqueezeNet and
ResNet-34, we show one block as the representative, since the other blocks have similar performance.

Several insights can be drawn from Figure 7. (i) The value of µ of each convolutional layer is
consistently greater than zero, indicating that Assumption 2(b) is satisfied, further ensuring the
convergence of the TREC-equipped CNNs. (ii) The lower convolutional layers have smaller µ
compared to the upper ones. (iii) The value of µ gradually increases through iterations. In fact, the

16

closer µ is to 1, the more the model moves toward the sufficient direction. Thus the gap between
µ and 1 reflects the difference between the current descent direction of the model and the steepest
descent direction [14]. The smaller values of µ in the lower convolutional layers in the early epochs
indicate a larger difference in the descent direction. It is because the guidance obtained from the loss
in the lower convolutinoal layers comes from back-propagation, which accumulates the disparities.
Small µ values in the early epochs help the model avoid being trapped in local minimums, while
large µ values in the later epochs help the model converge.

Conv1
Conv2

 C

ifa
rN

et

Squeeze
Expand(1x1)
Expand(3x3)

Sq
ue

ez
eN

et

(F

ir
e4

)

Conv1
Conv2
Conv3
Conv4
Conv5

Z
FN

et

1 15 30 45 60 75 90 100
Epoch

Conv2_1
Conv2_2
Conv2_3
Conv2_4
Conv2_5
Conv2_6

R
es

N
et

-3
4

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 7: Sufficient direction constant µ.

C Single-Layer Performance

C.1 Single-Layer Performance Benefits

Table 3: Single-layer performance benefits. Conf. means configuration, L is the width of sub-
matrices, H is the number of hash functions, rt represents the redundancy ratio, and ∆ Acc is the
accuracy difference.

Network Layer Conf.
rt Speedup ∆Acc.

(vs. Conventional)
∆Acc.

(vs. Deep Reuse)L H

CifarNet Conv1 5 15 0.9429 1.81× -0.0132 0.0428
Conv2 10 10 0.7947 1.52× -0.0077 0.0316

Average 0.8688 1.66× -0.0105 0.0372

ZfNet

Conv1 147 5 0.9997 1.22× -0.0011 0.0457
Conv2 300 5 0.9967 4.69× -0.0037 0.0319
Conv3 432 5 0.9884 4.72× -0.0076 0.0389
Conv4 432 5 0.9982 6.23× -0.0105 0.0228
Conv5 288 5 0.9842 5.58× -0.0068 0.0311

Average 0.9934 4.49× -0.0059 0.0341

Vanilla
SqueezeNet

Conv1 9 5 0.9969 1.27× -0.0066 0.0311
Fire2 - squeeze 96 4 0.9922 1.02× -0.0179 0.0310
Fire2 - 1×1 expand 8 5 0.9934 4.61× 0.0006 0.0233
Fire2 - 3×3 expand 48 5 0.9875 6.04× 0.0040 0.0182
Fire3 - squeeze 64 4 0.9877 1.30× 0.0029 0.0138
Fire3 - 1×1 expand 8 5 0.9932 4.51× 0.0055 0.0132
Fire3 - 3×3 expand 72 5 0.9876 6.43× 0.0029 0.0138
Fire4 - squeeze 64 4 0.9980 1.07× -0.0062 0.0337
Fire4 - 1×1 expand 16 5 0.9879 3.61× 0.0037 0.0240

17

Network Layer Conf.
rt Speedup ∆Acc.

(vs. Conventional)
∆Acc.

(vs. Deep Reuse)L H

Vanilla
SqueezeNet

Fire4 - 3×3 expand 144 5 0.9877 5.86× 0.0035 0.0289
Fire5 - squeeze 128 4 0.9844 1.05× 0.0001 0.0139
Fire5 - 1×1 expand 4 5 0.9906 4.96× -0.0009 0.0151
Fire5 - 3×3 expand 144 5 0.9500 3.25× -0.0064 0.0162
Fire6 - squeeze 32 5 0.9598 1.78× -0.0008 0.1935
Fire6 - 1×1 expand 6 5 0.9736 2.84× 0.0064 0.0213
Fire6 - 3×3 expand 54 5 0.9504 16.06× -0.0078 0.0159
Fire7 - squeeze 48 5 0.9600 1.39× -0.0023 0.0146
Fire7 - 1×1 expand 6 5 0.9754 2.67× 0.0049 0.0224
Fire7 - 3×3 expand 216 5 0.9523 16.95× -0.0052 0.0105
Fire8 - squeeze 8 5 0.9784 1.39× -0.0063 0.0805
Fire8 - 1×1 expand 4 5 0.9710 4.31× 0.0065 0.0224
Fire8 - 3×3 expand 288 5 0.9500 18.66× -0.0042 0.0127
Fire9 - squeeze 256 5 0.9250 1.07× 0.0062 0.2365
Fire9 - 1×1 expand 8 5 0.8563 1.10× 0.0037 0.0201
Fire9 - 3×3 expand 288 5 0.8156 12.63× 0.0058 0.0148

Conv10 4 5 0.9235 1.32× -0.0084 0.1901
Average 0.9626 4.89× -0.0006 0.0435

SqueezeNet +
Complex Bypass

Conv1 9 5 0.9969 1.27× 0.0122 0.0783
Fire2 - squeeze 96 4 0.9926 1.07× 0.0144 0.0559
Fire2 - 1×1 expand 8 5 0.9914 1.41× 0.0023 0.0149
Fire2 - 3×3 expand 48 5 0.9897 5.90× 0.0002 0.0156
Bypass1 - 1×1 32 5 0.9940 2.45× 0.0071 0.0232
Fire3 - squeeze 64 4 0.9877 1.07× -0.0051 0.0145
Fire3 - 1×1 expand 8 5 0.9918 2.30× -0.0033 0.0167
Fire3 - 3×3 expand 24 5 0.9876 5.85× -0.0013 0.0222
Fire4 - squeeze 64 5 0.9895 1.00× -0.0040 0.0162
Fire4 - 1×1 expand 16 5 0.9881 1.45× -0.0037 0.0171
Fire4 - 3×3 expand 48 5 0.9876 6.36× 0.0012 0.0254
Bypass2 - 1×1 4 8 0.9933 2.53× -0.0012 0.0277
Fire5 - squeeze 64 4 0.9824 1.84× -0.0036 0.0188
Fire5 - 1×1 expand 16 5 0.9531 4.51× 0.0016 0.0163
Fire5 - 3×3 expand 48 5 0.9542 11.83× 0.0001 0.0197
Fire6 - squeeze 128 5 0.9719 1.01× -0.0018 0.0213
Fire6 - 1×1 expand 32 5 0.9631 4.40× -0.0071 0.0189
Fire6 - 3×3 expand 72 5 0.9534 12.50× 0.0002 0.0242
Bypass3 - 1×1 32 5 0.9768 5.29× 0.0021 0.0192
Fire7 - squeeze 48 5 0.9648 1.71× 0.0003 0.0257
Fire7 - 1×1 expand 24 5 0.9570 4.00× -0.0046 0.0265
Fire7 - 3×3 expand 48 5 0.9531 9.36× -0.0025 0.0357
Fire8 - squeeze 64 4 0.9685 1.03× -0.0003 0.0299
Fire8 - 1×1 expand 16 5 0.9645 2.15× 0.0012 0.0164
Fire8 - 3×3 expand 64 5 0.9550 7.57× -0.0022 0.0188
Bypass4 - 1×1 128 5 0.9609 1.12× -0.0045 0.0385
Fire9 - squeeze 128 4 0.8938 1.01× -0.0078 0.0138
Fire9 - 1×1 expand 16 5 0.8391 1.53× -0.0019 0.0188
Fire9 - 3×3 expand 96 5 0.8406 11.64× -0.0022 0.0235

Conv10 4 5 0.9438 1.29× 0.0057 0.0326
Average 0.9629 3.88× -0.0003 0.0249

ResNet
(ImageNet-64×64)

Conv1 25 5 0.8396 7.64× -0.00063 0.0236
Conv2-1 144 5 0.9942 7.69× -0.0010 0.0353
Conv2-2 144 5 0.9876 7.99× -0.0002 0.0255
Conv2-3 144 5 0.9919 7.80× -0.0027 0.0455
Conv2-4 144 5 0.9880 7.98× 0.0008 0.0301
Conv2-5 144 5 0.9884 7.96× -0.0036 0.0201
Conv2-6 144 5 0.9876 7.99× -0.0027 0.0475

18

Network Layer Conf.
rt Speedup ∆Acc.

(vs. Conventional)
∆Acc.

(vs. Deep Reuse)L H

ResNet
(ImageNet-64×64)

Conv3-1 144 5 0.9510 6.75× -0.0030 0.0250
Conv3-2 144 5 0.9579 7.18× -0.0044 0.0169
Conv3-3 144 5 0.9500 6.87× -0.0007 0.0302
Conv3-4 144 5 0.9537 7.02× -0.0045 0.0190
Conv3-5 144 5 0.9528 6.98× -0.0008 0.0398
Conv3-6 144 5 0.9554 7.09× -0.0023 0.0229
Conv3-7 144 5 0.9557 7.10× 0.0028 0.0262
Conv3-8 144 5 0.995 7.49× -0.0011 0.0195
Conv4-1 288 5 0.9815 1.88× -0.0003 0.0386
Conv4-2 72 5 0.9802 2.99× -0.0036 0.0330
Conv4-3 72 5 0.9804 3.00× -0.0022 0.0168
Conv4-4 72 5 0.9802 2.99× -0.0002 0.0515
Conv4-5 72 5 0.9800 2.99× -0.0015 0.0275
Conv4-6 72 5 0.9802 2.99× -0.0009 0.0607
Conv4-7 72 5 0.9812 3.01× -0.0002 0.0311
Conv4-8 72 5 0.9800 2.99× 0.0001 0.0376
Conv4-9 72 5 0.9803 3.00× 0.0001 0.0196

Conv4-10 72 5 0.9804 3.00× -0.0010 0.0427
Conv4-11 72 5 0.9838 3.06× -0.0009 0.0500
Conv4-12 72 5 0.9800 2.99× -0.0013 0.0271
Conv5-1 36 5 0.9279 1.54× -0.0023 0.0506
Conv5-2 114 5 0.9239 1.20× 0.0005 0.0327
Conv5-3 96 5 0.973 1.01× -0.0011 0.0242
Conv5-4 96 5 0.925 1.01× -0.0023 0.0441
Conv5-5 96 5 0.93 1.04× -0.0007 0.0180
Conv5-6 96 5 0.9268 1.01× -0.0011 0.0420

Average 0.9630 4.64× -0.0013 0.0326

C.2 Sensitivity Study: Performance on Varying Batch Sizes

In this section, we perform an analysis of the impact of batch size on TREC inference performance.
Due to the stringent memory limit of MCU, it is infeasible to run the inferences on larger batch
sizes. We hence use servers for this experiment and focus on the amount of avoided redundancy. We
visualize in Figure 8 the impact of batch size on the average redundancy ratio (rt), the larger the
more redundancy is avoided. It can be seen that as batch sizes increase, the redundancy ratios also
increase. It is intuitive: A larger batch increases the number of neuron vectors in the input matrix,
and hence increases the possibility for reusing the results. This suggests that TREC can bring in more
computational savings at larger batch sizes.

1 25 50 75 100 125 150 175 200 225 256
Batch size

0.80

0.85

0.90

0.95

1.00

r t

CifarNet(2nd) + CIFAR-10
ZFNet(2nd) + CIFAR-10
SqueezeNet(4th) + CIFAR-10
ResNet(2nd) + ImageNet(64x64)

Figure 8: The impact of batch size on remaining ratio(rt).

19

D ResNet Configuration Analysis

Here we compare the effects of different parameters on ResNet-34, which is trained and evaluated on
downsampled ImageNet (64×64). The results in Figure 9 follow the conclusions given in Section 5.4,
validating the effectiveness of the TREC design.

5 10 15 20
H

0.30

0.35

0.40

0.45

0.50

A
cc

ur
ac

y

ResNet(2nd)
Regular
TREC
Deep Reuse

4 9 18 36 72 192
L

0.30

0.35

0.40

0.45

0.50

ResNet(2nd)
Regular
TREC
Deep Reuse

5 10 15 20
H

0.30

0.35

0.40

0.45

0.50

ResNet(2nd)
Dynamic
Static(10 4)

Figure 9: Effects of LSH parameter configuration and dynamic/static σ on accuracy of ResNet-34.

20

	Introduction
	Related Work
	TREC
	Basic TREC Architecture
	Breaking the Back-Propagation Barriers for TREC

	Theoretical Analysis
	Robustness
	Convergence
	Complexity

	Evaluation
	Experimental Setup
	Single-Layer Performance
	End-to-End Performance
	Configuration Analysis

	Conclusion
	Proofs
	Sufficient Direction Constant
	Single-Layer Performance
	Single-Layer Performance Benefits
	Sensitivity Study: Performance on Varying Batch Sizes

	ResNet Configuration Analysis

