
Exploring Query Processing on CPU-GPU
Integrated Edge Device

Jiesong Liu, Feng Zhang , Hourun Li, Dalin Wang, Weitao Wan, Xiaokun Fang,

Jidong Zhai , and Xiaoyong Du

Abstract—Huge amounts of data have been generated on edge devices every day, which requires efficient data analytics and

management. However, due to the limited computing capacity of these edge devices, query processing at the edge faces tremendous

pressure. Fortunately, in recent years, hardware vendors have integrated heterogeneous coprocessors, such as GPUs, into the edge

device, which can provide much more computing power. Furthermore, the CPU-GPU integrated edge device has shown significant

benefits in a variety of situations. Therefore, the exploration of query processing on such CPU-GPU integrated edge devices becomes

an urgent need. In this article, we develop a fine-grained query processing engine, called FineQuery, which can perform efficient query

processing on CPU-GPU integrated edge devices. Particularly, FineQuery can take advantage of both architectural features of edge

devices and query characteristics by performing fine-grained workload scheduling between the CPU and the GPU. Experiments show

that on TPC-H workloads, FineQuery reduces 42.81% latency and improves 2.39� bandwidth utilization on average compared to the

implementation of using only GPU or CPU. Furthermore, query processing at the edge can bring significant performance-per-cost

benefits and energy efficiency. On average, FineQuery at the edge brings 21� performance-per-cost ratio and 4� energy efficiency

compared with processing the data on a discrete GPU platform.

Index Terms—CPU, GPU, integrated architecture, edge device, query processing

Ç

1 INTRODUCTION

MASSIVE data are generated at the edge every day. These
data also need to be processed and managed. How-

ever, edge devices usually have low computing power. The
edge processors have fewer cores with low frequency to
retain power efficiency. Accordingly, processing data at the
edge poses great pressure for management of data. Fortu-
nately, hardware vendors embedded a heterogeneous
coprocessor at the edge, enhancing the data processing
capability of these edge devices. We show an example of
Nvidia Jetson XAVIER NX [1] in Fig. 1, which is a full com-
puting system integrated with an embedded GPU. Specifi-
cally, it has extremely low power for energy efficiency, and
it has high performance-per-cost ratio. Therefore, it is not
only essential but also of great benefits to explore how to

perform efficient data management on such CPU-GPU inte-
grated edge devices.

Performing query processing on such CPU-GPU inte-
grated edge devices introduces has great benefits. First, net-
work transmission overhead of transmitting data to the
cloud can be greatly reduced because most data are proc-
essed on edge devices with powerful embedded GPUs. Sec-
ond, PCIe transmission cost, especially unnecessary copies
in both the CPU memory and the GPU memory of the dis-
crete CPU-GPU architecture, can be avoided. The integrated
edge device uses a unified shared memory for both the CPU
and the embedded GPU, instead of the discrete memory
design for HPC GPU machines. Third, a query can be
divided into several operators, and different operators can
exhibit different performance behaviors on CPU and GPU.
The unified design provides a new opportunity in distribut-
ing these operators to CPU and GPU adaptively for fine-
grained collaboration.

Query processing on CPU-GPU integrated edge devices
is challenging, though it can bring massive benefits. First,
we need to utilize the unified shared memory with query
optimization. The memory bandwidth limitation on edge
devices still exists, and the bandwidth provided by edge
devices is lower than HPC servers. Besides, CPU and GPU
have diverse memory access patterns and can incur differ-
ent pressure on unified shared memory and devices. Cur-
rent query processing solutions do not consider these
complicated situations on discrete architectures. Second, a
comprehensive performance model needs to be built to
assist query optimization at the edge. Operators can have
different preferred devices, such as CPU and GPU. We need
to build a performance model to measure and formulate the
effectiveness of different processing strategies from various

� Jiesong Liu, Feng Zhang, Hourun Li, Dalin Wang, Weitao Wan, Xiaokun
Fang, and Xiaoyong Du are with the Key Laboratory of Data Engineering
and Knowledge Engineering (MOE), School of Information, Renmin Uni-
versity of China, Beijing 100872, China. E-mail: {liujiesong, fengzhang,
lihourun, sxwangdalin, wanweitao, fangxiaokun, duyong}@ruc.edu.cn.

� Jidong Zhai is with the Department of Computer Science and Technology,
Tsinghua University, Beijing 100084, China. E-mail: zhaijidong@tsinghua.
edu.cn.

Manuscript received 14 Oct. 2021; revised 16 Apr. 2022; accepted 18 May 2022.
Date of publication 26 May 2022; date of current version 23 Aug. 2022.
This work was supported in part by the National Natural Science Foundation
of China under Grants 61732014, 62172419, U20A20226, and 62072459, in
part by the Beijing Natural Science Foundation under Grant 4202031, and in
part by the Tsinghua University-Peking Union Medical College Hospital Ini-
tiative Scientific Research Program under Grant 20191080594. This work was
also supported by CCF-Tencent Open Research Fund.
(Corresponding author: Feng Zhang.)
Recommended for acceptance by P. D’Ambra.
Digital Object Identifier no. 10.1109/TPDS.2022.3177811

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022 4057

1045-9219 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Renmin University. Downloaded on November 03,2022 at 07:09:15 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-1983-7321
https://orcid.org/0000-0003-1983-7321
https://orcid.org/0000-0003-1983-7321
https://orcid.org/0000-0003-1983-7321
https://orcid.org/0000-0003-1983-7321
https://orcid.org/0000-0002-7656-6428
https://orcid.org/0000-0002-7656-6428
https://orcid.org/0000-0002-7656-6428
https://orcid.org/0000-0002-7656-6428
https://orcid.org/0000-0002-7656-6428
mailto:liujiesong@ruc.edu.cn
mailto:fengzhang@ruc.edu.cn
mailto:lihourun@ruc.edu.cn
mailto:sxwangdalin@ruc.edu.cn
mailto:wanweitao@ruc.edu.cn
mailto:fangxiaokun@ruc.edu.cn
mailto:duyong@ruc.edu.cn
mailto:zhaijidong@tsinghua.edu.cn
mailto:zhaijidong@tsinghua.edu.cn

perspectives. Third, task co-running combined with query
characteristics is another difficulty. To achieve high effi-
ciency, tasks are divided into subtasks, and we need to
develop a novel subtask co-running strategy with high par-
allelism for CPU-GPU integrated edge devices.

Many studies have been conducted to utilize the CPU-
GPU integrated architectures in data management applica-
tions [2], [3], [4]. However, none of these works explored
query processing on integrated edge devices. For instance,
He et al. [2] studied the hash join algorithm in database
domain by partitioning the workload in each stage to obtain
the optimal CPU-GPU co-running performance, but they
did not consider the other operators. Zhang et al. [3], [4]
developed a stream processing engine on integrated archi-
tectures, called FineStream, which can perform fine-grained
workload partitioning for CPU and GPU. However, Fine-
Stream targets stream situation, and cannot handle the com-
plicated queries among edge devices.

To address the aforementioned challenges, we develop
a fine-grained query processing engine, called FineQuery,
which can fully utilize the CPU-GPU integrated edge
device for query processing. First, FineQuery can utilize
the unified memory by enabling the CPU and GPU to
access memory in a suitable pattern. Second, we propose a
performance model. Based on the combination of statistic
data collected in preprocessing and input data attributes,
the model can indicate the processors on which the opera-
tors should be executed. Third, we develop a sub-task
module to split a specified query into several operators.
The sub-task module can distribute the operators into dif-
ferent sub-tasks, which can then be processed in parallel
on CPU and GPU. Our preliminary work has been pre-
sented in FineQuery [5], which provides only a simple
design without considering the edge situation. Compared
with the preliminary work [5], we show new insights and
optimizations. Besides, new benchmarks and datasets
have been involved in experiments.

FineQuery can be applied in the database management
systems at the edge [6], [7], [8]. As a new technology, Fine-
Query helps databases to accelerate queries on edge devices.
The databases deployed at the edge in the network can use
the CPU-GPU integrated edge device to speed up queries. At

the same time, FineQuery is close to the source of informa-
tion to facilitate data collection.

We evaluate FineQuery on one of the most powerful inte-
grated edge devices, Nvidia JETSON AGX XAVIER, and an
AMD’s integrated platform, A10-7850K, covering different
situations. Experiments show that FineQuery reduces
42.81% latency and improves 2.39� bandwidth utilization
over the current query processing method on the integrated
architectures. The same queries performed on the discrete
architecture take 59.29% more processing time compared to
the FineQuery version. Also, FineQuery can bring 21� per-
formance-per-cost benefits with 4� energy efficiency.

As far as we know, FineQuery is the first work exploring
query processing on CPU-GPU integrated edge devices.
The contributions of this paper are summarized as follows.

� We present FineQuery, which is the first framework
enabling fine-grained query processing on the CPU-
GPU integrated edge device.

� We point out that fine-grained continuous operator
model can be performed on integrated architectures.
We unveil the challenges for fine-grained query
processing at the edge and provide a series of
solutions.

� We show a series of optimizations of FineQuery on
edge devices, and demonstrate the benefits of utiliz-
ing integrated architectures for query processing
from different perspectives.

2 BACKGROUND AND PREMISES

In this section, we show the background and premises of
query processing on the CPU-GPU integrated edge devices.

2.1 Edge Devices

An edge device is a device that can serve as an entry into the
networks of enterprises or service providers, and edge com-
puting is a computing paradigm that moves data processing
and storage close to the data sources. Edge computing
becomes increasingly popular because it can save both
transmission time and bandwidth. However, the computing
capacity of edge devices is usually low.

CPU-GPU Integrated Edge Device. The CPU-GPU inte-
grated edge device can solve the shortcomings of insuffi-
cient computing power of edge devices. First, the CPU-GPU
integrated edge device still maintains the characteristics of
low power consumption, but with high computing capacity.
For example, the Nvidia integrated edge device, Jetson Xav-
ier NX, fuses an ARM CPU with an Nvidia Volta GPU on
the same chip, providing 14 TOPs computing capacity with
only 10W power [1]. Second, both the CPU and the GPU of
the integrated edge device share the same unified memory,
which avoids PCIe transmission between CPU and GPU,
and at the same time provides more opportunities for fine-
grained query processing. Third, the integrated edge device
still retains the edge benefits. It has low price and low space
overhead. Currently, the CPU-GPU integrated edge devices
are widely used in different domains, such as robotics and
edge computing [9].

CPU-GPU Integrated Architecture Design. Fig. 2 shows an
overview of the CPU-GPU integrated architecture design.

Fig. 1. Nvidia edge device: Jetson XAVIER NX.

4058 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

Authorized licensed use limited to: Renmin University. Downloaded on November 03,2022 at 07:09:15 UTC from IEEE Xplore. Restrictions apply.

On the integrated architecture, both the CPU and the GPU
are integrated on the same chip, sharing the same system
main DRAM. Different from the discrete CPU-GPU archi-
tecture, a memory controller is used to schedule the mem-
ory accesses to the unified memory from both the CPU and
the GPU. The unified shared memory, accessible to both
CPU and GPU, is the most appealing characteristic of the
integrated edge device. It brings new opportunities for fine-
grained cooperation between CPU and GPU.

Opportunities. First, in an application environment with
restrictions on power consumption, equipment area, and
cost, the CPU-GPU integrated edge device still applies. Sec-
ond, GPU can process the generated data directly without
PCIe data transmission. Third, the operators of a query can
be placed on their preferred devices and process the same
data stored in the unified shared memory.

2.2 Query Processing

The process of extracting user-required data from a data-
base is known as query processing. In big data era, rela-
tional database still plays an important role in data
management [10], [11], [12], [13]. The core of the relational
database is the relational data model. The standard lan-
guage for relational databases is structured query language
(SQL). Relational databases manage and maintain relational
data through SQL to help users express their queries.
Accordingly, we mainly explore SQL queries in this paper.

SQL Operators. A SQL operator is a reserved operation in
SQL query statement. SQL queries are made up of opera-
tors, including select, project, join, divide, union, except, inter-
section, and cartesian product. Among these operators, select,
project, union, except, and cartesian product are five basic oper-
ators. The other operators can be exported and defined
through these basic operators. These operators are used for
data maintenance.

GPU-Based Query Processing. GPUs have been used in
many database engines to accelerate database query process-
ing [14], [15], [16]. For example, GPUQP [14] is a relational
GPU query processing engine, which accelerates operators
on GPUs. MapD [15] is an efficient GPU-powered database
platform, which can leverage massive GPU cores in process-
ing SQL queries. However, these systems can only use GPUs
to process a whole query, without further fine-grained
workload partitioning on different devices. OmniDB [16] is
an OpenCL-based heterogeneous query processing engine,
built on GPUQP. OmniDB can be applied to various devi-
ces, including both CPU and GPU, but with only simple

operators evaluated. Moreover, none of these works focus
on edge devices.

TPC-H Benchmark. A data management benchmark is the
execution of a set of standard queries to measure the perfor-
mance of a query processing engine. The Transaction Per-
formance Management Committee (TPC) is currently one of
the most well-known benchmark standardization organiza-
tions for data management system evaluation. In the past
two decades, this organization has released a number of
database evaluation benchmarks, including TPC-A, TPC-D,
TPC-H, and TPC-DS, which have been widely used in the
data management domain. Among these benchmarks, TPC-
H is a decision-making benchmark, which simulates a set of
business queries. The main purpose of TPC-H is to evaluate
the decision-making support capabilities of specific queries
and to measure the capabilities of the query processing
engine in data mining, data analytics, and data processing.
TPC-H consists of 22 complicated queries and has been
widely used in previous research [17], [18]. In this paper,
we use TPC-H in our experiments.

3 MOTIVATION

We in this section show the motivation of fine-grained query
processing on the CPU-GPU integrated edge device. We first
revisit the current query processingmodels. Then,we exhibit
our basic idea, and show the challenges in enabling query
processing at the edge.

3.1 Preliminaries

Based on the processing granularity, the query processing
models are classified into two categories: bulk-synchronous
parallel model and continuous operator model [19], as
shown in Fig. 3.

Bulk-Synchronous Model. The bulk-synchronous parallel
model has been employed by traditional query processing
engines, which distributes the whole query of operators on
the same device, as shown in Fig. 3a. This design is suitable
for discrete CPU-GPU architectures because frequent data
communication between devices via PCIe can incur severe
time overhead. Previous studies [14], [20] adopt this design
to avoid PCIe data transmission between CPU and GPU.

Continuous Operator Model. The continuous operator
model can distribute operators of the same query to differ-
ent devices, as shown in Fig. 3b. Experiments show that dif-
ferent operators can have various device preferences [3], [4].
With the integrated architecture fusing different devices on
the same chip, we have new opportunities to put operators
on different devices, since the PCIe limitation has been elim-
inated. Please note that the continuous operator model is

Fig. 2. Overview of the integrated edge device.

Fig. 3. Analysis of different processing granularities.

LIU ETAL.: EXPLORING QUERY PROCESSING ON CPU-GPU INTEGRATED EDGE DEVICE 4059

Authorized licensed use limited to: Renmin University. Downloaded on November 03,2022 at 07:09:15 UTC from IEEE Xplore. Restrictions apply.

not appropriate for discrete CPU-GPU design, because this
model requires frequent data communication between CPU
and GPU.

3.2 Fine-Grained Query Processing on CPU-GPU
Integrated Edge Device

Basic idea:We apply a continuous operator model on CPU-
GPU integrated architectures, with operators assigned to
CPU andGPU according to their characteristics.

Our fundamental idea is to use the continuous operator
model on CPU-GPU integrated architectures, as shown in
Fig. 3b. Performing fine-grained query processing on inte-
grated architectures has the following benefits. First, the
PCIe data transmission bottleneck has been removed, which
provides more opportunities to CPU and GPU for fine-
grained co-processing. Second, CPU and GPU share the
same unified memory so that they can operate on the same
data together simultaneously. Third, device preference for
different operators can be guaranteed since the most suit-
able device for different operators varies. Furthermore, we
need to provide the appropriate solution given the limited
computing resources.

Currently, no continuous operator model has been thor-
oughly investigated on CPU-GPU integrated edge devices.
OmniDB [16] is a framework that can distribute operators to
different devices on integrated architectures. However,
OmniDB has not been evaluated with complicated queries
such as TPC-H. FineStream [3], [4] is a novel stream process-
ing framework utilizing the continuous operator model, but
FineStream targets stream processing situations. Therefore,
exploring the performance of the continuous operator
model on CPU-GPU integrated architectures for query proc-
essing is both beneficial and necessary.

3.3 Challenges

Enabling fine-grained query processing on integrated edge
devices requires to solve the following three challenges.

Challenge 1: Query optimization with CPU-GPU shared uni-
fied memory. Performing optimization towards the shared
unified memory of integrated edge devices is challenging.
First, although the integrated design eliminates the data
copy via PCIe by providing unified physical memory, the
memory bandwidth bottleneck still exists. Second, different
parallel topology decisions and query execution strategies
can cause different pressure on both shared global memory
and devices dynamically. Third, query optimization needs
to consider not only query characteristics but also hardware
features. This highlights the significance of proper organiza-
tion and resource allocation.

Challenge 2: Building a comprehensive performance model to
help with query optimization. Utilizing parallel processing
technology can potentially accelerate the SQL query at the
edge, as discussed in Section 2.2. However, not all the oper-
ators are suitable to be carried on a single device, such as
GPU or CPU. Partial operators prefer a certain kind of
device. Besides, not all SQL queries can obtain significant
performance improvement via fine-grained query process-
ing on integrated architectures. In order to build a scalable

and practical system at the edge, we need to establish a
comprehensive performance model to evaluate and formu-
late the effective and practical processing strategy from var-
ious perspectives. Besides, complex practical situations and
numerous operator combinations make developing a com-
prehensive performance model even more complicated.

Challenge 3: Sub-tasks co-running with query characteristics
considered. For those SQL queries processing a large amount
of data, there are great potential opportunities to accelerate
queries by utilizing parallel processing on edge devices. To
achieve this goal, we develop a new technique called sub-task
co-running. Our method is responsible for appointing the
execution order and operator-device mapping. However,
this design is far more complicated than expected because it
has to take a large number of influencing factors into consid-
eration. First, the relation between different operators can be
constantly changing in practice. Our method needs to ana-
lyze the irrelevant or dependent relation between two opera-
tors to determine whether they can be executed in parallel.
Accordingly, operators with dependent relations cannot be
executed arbitrarily. Second, data characteristics can influ-
ence the operator-device mapping. For example, massive
atomic operations on double data type do not suit the GPU
device. Third, the architectural characteristics also need to be
considered, since the architectural characteristics influence
the resource distribution due to the CPU and GPU architec-
tural differences, such as computing capacity and cache size.
Therefore, how to perform such a sub-task co-running on
integrated edge device is challenging.

Overall, enabling fine-grained query processing on inte-
grated edge devices is rewarding, but full of difficulties.

4 FINEQUERY DESIGN

In this section, we propose a query processing engine, called
FineQuery, for fine-grained SQL query processing on CPU-
GPU integrated edge devices.

General Design. The general design of FineQuery is
shown in Fig. 4. FineQuery consists of three major parts,
which are sub-task module, performance model module,
and dispatcher module. The sub-task module splits a certain
SQL query into several different operators and then forms
several independent sub-tasks based on the performance
model for all the operators. The module of performance
model builds operator-device mapping and adjusts the pre-
liminary sub-task distribution strategy. The dispatcher
module assigns operators to devices according to the perfor-
mance model. The three modules work together for fine-
grained query processing. The detailed design of the three
modules is as follows.

� The sub-task module splits a SQL query into several
separate operators. Then, it organizes the operators
into a DAG and partitions the DAG into different
sub-tasks that can be processed simultaneously and
independently.

� The module of performance model first decides the
devices on which the operators are processed based
on the combination of collected statistic data and
practical data attributes. Subsequently, it assesses
the performance of present sub-task decisions in

4060 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

Authorized licensed use limited to: Renmin University. Downloaded on November 03,2022 at 07:09:15 UTC from IEEE Xplore. Restrictions apply.

multi-dimensions, such as parallelism degree, hard-
ware resource, and speedup ratio. Finally, it adjusts
the sub-task strategy to achieve a suitable perfor-
mance according to the previous analysis.

� The dispatcher module assigns data to operators on
GPU or CPU according to the strategy made by the
performance model.

Next, we discuss the general idea of FineQuery, includ-
ing its workflow, sub-task co-running, and solutions to
challenges.

Workflow. We show the workflow of the three major com-
ponents as follows. When the program starts to process a
SQL query, it judges whether it needs to be processed in
parallel. If the data size is small, we process the data with
only the CPU in FineQuery. Otherwise, FineQuery uses the
above three modules to process input data. In detail, first,
the sub-task module splits the whole query into separate
operators, analyzes the relations between these operators,
and distributes them into several sub-tasks for parallel proc-
essing. Second, the module of performance model makes a
preliminary operator assignment strategy and subsequently
assesses the feasibility and performance of current decision
from different perspectives. Then, it readjusts the decision
for higher performance. Third, according to the strategy
made previously, the dispatcher module assigns the opera-
tors to the CPU or the GPU, and assigns corresponding data
to each operator. After the process of the three above mod-
ules, FineQuery formally starts to execute each operator in
parallel and generates the result.

Sub-Task Module and DAG. The SQL query plan can be
described as a DAG by representing each single operator as
a node. There is a directed edge between two arbitrary
nodes if and only if data dependence relation exists between
two nodes’ corresponding operators. Similar to [3], [4], we
use a DAG to describe the topology of a SQL query.

After constructing the corresponding DAG, we next per-
form a topological sorting algorithm on it, by which we can
obtain the sub-task model of the SQL query. The number of
sub-tasks is equal to the number of independent parts in the
result of the topological sorting. The main reason for adopt-
ing the sub-task model is to figure out the parallel structure

of the SQL query. Operators in different sub-tasks can be
processed in parallel because no data-dependent relation
exists between them. Note that operators in a single sub-task
must be executed in a certain and restricted order because of
data dependence. For example, in Fig. 5, the processing order
of sub-task2 is < OP3; OP4; OP5 > , which cannot be dis-
turbed. Next, we use Fig. 5 to explain our idea in detail.

We can see that there are three sub-tasks in the single
DAG, which can be processed in parallel. Then, we need to
merge the intermediate results of the three sub-tasks before
executing OP7. Next, we use the terminology of critical path
in [3], [4] to represent the longest stretch of dependent activ-
ities, so that we can measure the time required to finish the
query. Similarly, in a SQL query, the sub-task with the most
operators is more likely to become part of the critical path
and determines the execution time of the whole query.
Therefore, in the example of Fig. 5, sub-task2 and OP7 form
the critical path and the total execution time is equal to the
whole execution time of OP7 and sub-task2.

The main goal of using the DAG terminology is to help
us figure out the critical path and to optimize the design
effectively. Because in parallel execution, the time for the
other sub-critical paths is shorter than the duration of the
DAG execution, which means that we can focus on the criti-
cal path first to improve the DAG processing efficiency.

Solutions to Challenges. FineQuery can solve the chal-
lenges mentioned in Section 3.3. For the first challenge, Fine-
Query does not calculate the bandwidth or adjust the
strategy in real time, because of the overhead. In contrast,
we solve this challenge by optimizing our sub-task structure
with the performance model. FineQuery adopts a strategy
that can distribute the workloads on CPU and GPU evenly,
which ensures the parallelism being carried within limited
bandwidth. For the second challenge, the main goal of the
performance model is to adjust the query execution struc-
ture and there are additional amounts of factors needed to
be taken into consideration. Hence, we adopt three specified
sub-models to constitute our overall performance model,
which are sub-task model, pipeline model, and parameter
tuning model, respectively. The three concrete sub-models
solve the corresponding specific sub-problems. For the third
challenge, after splitting a certain SQL query into different
operators, we represent the whole SQL query as a DAG. In
processing this DAG, we employ the topological sort algo-
rithm to form a preliminary parallel structure, in which
operators are distributed into several sub-tasks. By utilizing
the performance model to take comprehensive factors into
consideration, we further improve the parallel structure
and can address the first challenge.

Fig. 4. FineQuery overview.

Fig. 5. An example of sub-task structure.

LIU ETAL.: EXPLORING QUERY PROCESSING ON CPU-GPU INTEGRATED EDGE DEVICE 4061

Authorized licensed use limited to: Renmin University. Downloaded on November 03,2022 at 07:09:15 UTC from IEEE Xplore. Restrictions apply.

5 PERFORMANCE MODEL

Guideline: Building an efficient and lightweight model is
both necessary and important for FineQuery. The strategy
and organization we use are based on performance mod-
els, and different strategies can lead to different perfor-
mance behaviors in practice, especially when FineQuery
processing large amount of data. Therefore, a simple and
light model not only guarantees the performance of Fine-
Query, but also keeps themodeling cost marginal.

We show our performance model in FineQuery in this sec-
tion. FineQuery achieves performance acceleration by utiliz-
ing fully parallel and fine-grained processing. In detail,
FineQuery’s performance model is composed of three spe-
cific sub-models, which are sub-task model, pipeline model,
and parameter tuning model. For the first two models, they
focus on accelerating processing separately from inter sub-
task and inner sub-task to achieve higher parallelism. In
contrast, the parameter tuning model readjusts the detailed
parameters to make the strategy more efficient.

5.1 Sub-Task Co-Running Model

Weneed to develop a sub-task co-runningmodel because the
DAG structurewe obtain after employing topological sorting
on DAG cannot be used directly. The reason is that the
resources of the integrated architecture are not unlimited. As
discussed in Section 4, the independent operators can exe-
cute in parallel and exceed the memory bandwidth limit.
Accordingly, extra resource limitation needs to be consid-
ered and further sub-task co-running model needs to be
designed.

For illustration, in Fig. 5, the three sub-tasks 1,2,3 can be
processed in parallel initially. Ideally, we assume that there
is enough bandwidth. CPU and GPU can simultaneously
process the three sub-tasks without interaction, and the total
execution time is equal to the sum of the time of sub-task2
and OP7 executed alone. However, in practice, due to the
integration of both CPU and GPU devices, the bandwidth
utilization is even tighter than that on discrete architectures.
When the required bandwidth of the co-running sub-tasks
exceeds the maximum bandwidth of the server, the total
execution time extends accordingly.

To estimate the execution time, we assume that the ideal
execution time with enough bandwidth is ttotal. We define
the ratio of exceeding bandwidth rexcessive as the percentage
of time the required bandwidth Brequired exceeds the maxi-
mum available bandwidth Bmax under ideal conditions. We
can express the execution time t0total in Equation (1)

ttotal
0 ¼ rexcessive � ttotal �Brequired

Bmax
þ ð1� rexcessiveÞ � ttotal:

(1)

We need to further estimate Brequired for Equation (1). To
calculate Brequired, we need to estimate the bandwidth for
each co-running sub-task, Bsub�task i, which can be esti-
mated by executing the sub-task on CPU and GPU. Assume
the number of co-running sub-tasks is nsub�task. Then,
Brequired can be expressed in Equation (2)

Brequired ¼
Xnsub�tasks

i¼1

Bsub�task i: (2)

Assume there are n excessive parts exceeding the maxi-
mum bandwidth. We can use Equation (3) to estimate ttotal’,
combining Equations (1) and (2)

ttotal
0 ¼

Xn excessive

i¼1

rexcessive i �
Pnsub�tasks

i¼1 Bsub�task i

Bmax

�

�ttotal
�
þ 1�

Xn excessive

i¼1

rexcessive i

 !
� ttotal: (3)

Optimization. The uneven workload distribution for oper-
ators can lead to performance decline and prolong the execu-
tion time. For example, compared with the over-saturated
state in Fig. 5, redundant resources can exist after OP4 in
sub-task2. To better utilize bandwidth, we move the execu-
tion of OP6 to the tail of sub-task2, as shown in Fig. 6. To esti-
mate the total time, we assume that the ideal execution times
of sub task1, sub task2, and sub task3 are t1, t2, and t3 respec-
tively with enough bandwidth. Accordingly, the total execu-
tion time can achieve a new lower bound, t00total, shown in
Equation (4)

ttotal
00 ¼ maxðt1 þ t3; t2Þ þ top 7: (4)

Generally, we can perform better sub-task scheduling
by moving operators from the sub-task with full band-
width utilization into the sub-task with surplus band-
width. For example, in Fig. 7, OP1 and OP2 form a stage.
To model the whole procedure, we quantitatively calculate
t00total as shown in Equation (5). Here, we introduce a new
concept, called stage, to further divide the sub-task.
Assume that there are nstages stages in a sub-task structure.
Each stage i has nstage i;sub tasks sub-tasks. Besides,
sub taskj has its ideal execution time tj with enough band-
width. After re-constructing the sub-task structure, the
numbers of operators in sub taskj can change as well. We
assume the execution time change caused by the subtle
transformation as treshape j for each sub taskj. Finally, the
left operators have their execution time, tleft. Hence, the
total time after optimization can be represented as Equa-
tion (5). The final optimized time can be represented as
minðttotal0; ttotal00Þ

ttotal
00 ¼

 Xnstages
i¼1

max
1�j�nstage i;sub tasks

ðtj þ treshape jÞ
!

þ tleft:

(5)

Fig. 6. Reconstructed sub-task structure.

4062 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

Authorized licensed use limited to: Renmin University. Downloaded on November 03,2022 at 07:09:15 UTC from IEEE Xplore. Restrictions apply.

5.2 Pipeline Model

We use the concept of critical path to analyze the entire exe-
cution time. In this part, we use pipeline to further shorten
the execution time of critical path.

We use Fig. 8 to illustrate the basic idea of pipeline. Sup-
pose OP1 is select while OP2 is sum. The data dependency
between OP1 and OP2 originally exists. We find that we can
execute the sum task without completely selecting all the
target data. In order to realize our idea, we divide the data
to be selected in OP1 into several blocks. The following sum
operator is able to start to work after one data block being
processed in OP1. Ideally, the time of OP1 and OP2 can be
reduced to the sum of the processing time of OP1 and one
data block (for OP2).

Assume that we split the whole data processed by OP1
into n blocks. The original execution times of OP1 and OP2
are t1 and t2 respectively. The ideal execution time is
defined as (t1 þ 1

n � t2). Assume the bandwidth of the serial
execution of OP1 and OP2 is bandwidth, then the improved
bandwidth bandwidth0 can be defined in Equation (6). Note
that in practice, how to determine the data blocks is intri-
cate. For example, when the difference of processing time
between OP1 and OP2 is large, the pipeline optimization
effect will be amortized

bandwidth0 ¼ min
t1 þ t2

t1 þ 1
n � t2

� bandwidth; Bmax

 !
: (6)

5.3 Parameter Tuning Model

In parameter tuning model, we evaluate our strategy and
further improve it from parameter adjustment perspectives.
Parameter tuning model mainly relates to operator distribu-
tion and device allocation.

For the first operator distribution, we find that opera-
tors exhibit different device preferences. For example,
selection and sum operators have relatively high parallel-
ism so they usually tend to be distributed on GPU. How-
ever, specified SQL queries may not obey the empirical
distribution. In detail, certain data types are not suitable to
be processed in parallel on GPUs. For instance, calculating
the sum of data in double with synchronization can bring
huge cost on GPU, but not on CPU. Out of intricate situa-
tions, we employ a decision tree to embody our operator
distribution solution in our parameter tuning model, as
elaborated in Fig. 9.

For the second device allocation, although we improve
the sub-task structure in the sub-task model, we still cannot
fully utilize the bandwidth all the time. Hence, in those
phases, when the number of operators being processed is
small, we can moderately increase the number of threads
for each operator. Because the speedup ratio does not
increase linearly with the number of threads, simply divid-
ing the total number of threads by the number of operators
in a phase can lead to a serious performance decline. We
should guarantee the basic quantity of threads for each
operator. Thus, we set a basic quantity for each operator in
advance and decide whether to increase the quantity
according to the practical processing situation. We assume
operatori needs at least ni (default 64) threads to guarantee
the performance, and there are noperators operators processed
on CPU or GPU and nthreads threads in CPU or GPU. Hence,
the optimized thread number nthread i for operatori is shown
in Equation (7)

Fig. 7. Sub-task structure with stages.

Fig. 8. Pipeline model.

Fig. 9. Decision tree for operator distribution tuning.

LIU ETAL.: EXPLORING QUERY PROCESSING ON CPU-GPU INTEGRATED EDGE DEVICE 4063

Authorized licensed use limited to: Renmin University. Downloaded on November 03,2022 at 07:09:15 UTC from IEEE Xplore. Restrictions apply.

nthread i ¼ max ni;
nthreads

noperators

� �
: (7)

In general, we show the workflow of FineQuery in using
the performance model in Fig. 10. The performance model
takes unoptimized structures as input, and then follows the
sub-task co-running and parameter adjusting sub-models. Spe-
cifically, we perform operator assignment and conduct query
attribute analysis on the assignment. Based on the analytic
results, we either move forward to the next step or re-assign
the complicated operators. There is only one step left before
we can move on to the next sub-model. That is, we check
the bandwidth requirement of the current operator assign-
ment and make corresponding adaptations. We then con-
duct a pipeline optimization following the pipeline model,
and start the FineQuery engine by allocating the specific
operators to their preferred processors.

6 OPTIMIZATION

In this section, we show our explorations on further opti-
mizing query processing on integrated edge devices.

6.1 Unified Memory

The unified memory is a distinguishing feature for the inte-
grated edge device, and we in this part show our memory
optimization at the edge.

Analysis of Unified Memory. The unified shared memory is
a distinctive feature over the heterogeneous CPU-GPU dis-
crete architecture. On discrete architecture, CPU and GPU
access their separate memory, and the implementation of
unified memory accessible to both CPU and GPU needs to
be supported by a page migration engine. Due to the dis-
crete CPU-GPU memory design, missing memory access
can incur frequent data reallocation and migration [21],
[22], which can cause serious performance degradation.
However, the integrated edge device does not have this
problem. As discussed in Section 2.1, both CPU and GPU of
the edge device use the same unified shared memory, with-
out PCIe data transmission.

Unified Memory Utilization. FineQuery utilizes the unified
shared memory for query processing on edge devices. After
allocating the data in the unified memory space, both CPU
and GPU can operate the memory objects with fine-grained
cooperation. The detailed process of FineQuery utilizing

unified memory is as follows. First, FineQuery uses the
CUDA API cudaMallocManaged() to allocate a buffer of uni-
fied memory for the input data. Second, FineQuery loads
the input data into the unified memory buffer for CPU and
GPU. Third, FineQuery performs fine-grained query proc-
essing according to the performance model.

6.2 Integrated Hierarchy

The integrated hierarchy design of edge devices fuses the
CPU and GPU characteristics. In detail, CPU features a
memory hierarchy to efficiently access data. In particular,
the caches provide high-speed data retrieval from the mem-
ory, and data access becomes slower on peripheral storage.
Likewise, the GPU also has local registers for each thread
and independent L1 and L2 caches for streaming multiproc-
essors. Specifically, GPU provides a controllable cache,
called shared memory, for threads within a CUDA thread
block. The integrated edge device further provides a unified
memory accessible to both CPU and GPU. FineQuery needs
to consider these different characteristics between the CPU
and GPU to achieve high efficiency. Accordingly, these opti-
mizations are oriented towards the difference between CPU
and GPU rather than different platforms.

Analysis of Integrated Hierarchy. Our general design is to
allocate frequently accessed data to the upper layer of the
memory hierarchy. We have an observation that the atomic
add operation on the GPU kernel can incur a high conflict
rate between threads. Specifically, if too many atomic adds
are made to the sum operator, the parallel version of the for
loop can lead to severe performance degradation. The rea-
son is that one thread can prevent the other threads from
accessing sum under the atomic locking mechanism. Such
mechanism and context switching can have a negative
impact on performance when capturing and releasing the
add. Therefore, our basic idea is to narrow the access range
of each thread in order to perform computation in shared
memory.

Integrated Hierarchy Utilization. We have the following
design. For a set of key-value objects, we need to perform
operations on the objects whose keys satisfy a given condi-
tion. To fully utilize the memory hierarchy of the integrated
design, we store the data that are frequently used in the
upper-level storage. The utilization of CUDA shared mem-
ory for threads in the same block is the focus of FineQuery.
Specifically, we allocate an array buffer with the size of the
number of threads located in each block. At the running
time, we check every key in each thread in parallel and set
the key to 0 if that object does not satisfy the specified condi-
tion. Finally, we perform a parallel reduction to generate the
sum of the values in the array.

6.3 Programming Model

In this part, we show our considerations from the perspec-
tive of programming models.

Analysis of Programming Models. OpenCL is a cross-plat-
form standard for parallel computing in heterogeneous sys-
tems, which is able to control both CPU and GPU. In
contrast, CUDA is specially designed for Nvidia GPUs.
CUDA leaves out complicated details in GPU programming
and provides programmers with simpler interfaces. Not all

Fig. 10. Workflow of FineQuery in using the performance model.

4064 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

Authorized licensed use limited to: Renmin University. Downloaded on November 03,2022 at 07:09:15 UTC from IEEE Xplore. Restrictions apply.

platforms support these programming models. For exam-
ple, Jetson AGX Xavier does not support OpenCL for CPU
and GPU, and A10-7850K is unable to support CUDA.

Programming Model Utilization. We develop different ver-
sions of FineQuery operators to adapt to various platforms.
For the Jetson AGX Xavier platform, we use CUDA for GPU
and use OpenMP to release the CPU parallel potentials.
Even though the CPU on the edge device has only eight
cores, it is good at handling situations that are not suitable
for parallelism. Furthermore, for operations combining con-
ditional branching and instruction jumping, OpenMP is
able to achieve good performance. Following this guideline,
we incorporate into the performance model the choice of
using OpenMP for operators in queries. We also use an Nvi-
dia performance profiling tool, nvprof, to facilitate our opti-
mization. For sub-components in our integrated engine, we
also explore standard functions available in thrust library
for better results. For example, we replace a GPU select ker-
nel for thrust::copy_if in Q19 of Table 1 that completes
the same task, and find that the thrust function can improve
performance by reducing 1.5� query time.

Adaptability. We implement the operators using various
programming models, including OpenCL, OpenMP, and
CUDA, for adaptability. The performance model in Section 5

is independent of the specific programming implementa-
tions of each operator. By incorporating the performance
statistics from different platforms into the performance
model, FineQuery can deliver the optimal query processing
solution for a given situation.

7 EVALUATION

In this section, we evaluate the performance of FineQuery at
the edge from various perspectives.

7.1 Experimental Setup

Methodology. We measure the performance of FineQuery on
the CPU-GPU integrated edge device. In FineQuery, opera-
tors are executed on both the CPU and GPU cooperatively
in a fine-grained mechanism. We also measure the perfor-
mance of FineQuery on only the CPU, denoted as “CPU-
only”, and FineQuery on only the GPU, denoted as “GPU-
only”, respectively. Besides, we also compare FineQuery
with the query processing on the discrete architecture.

Platforms. We conduct experiments on a CPU-GPU inte-
grated edge device, Nvidia Jetson AGX Xavier. This plat-
form provides eight Carmel ARM CPU cores and 512
Nvidia Volta GPU cores with a unified 32GB DRAM. To

TABLE 1
TPC-H Queries Used in Evaluation [23]

Query Detail

Q1 select l_returnflag, l_linestatus, sum(l_quantity) as sum_qty, sum(l_extendedprice) as

sum_base_price, sum(l_extendedprice (1 - l_discount)) as sum_disc_price, sum

(l_extendedprice (1 - l_discount) (1 + l_tax)) as sum_charge, avg(l_quantity) as avg_qty,

avg(l_extendedprice) as avg_price, avg(l_discount) as avg_disc, count() as count_order

from lineitem where l_shipdate <= date ’1998-12-01’ - interval ’90’ day (3) group by

l_returnflag, l_linestatus order by l_returnflag, l_linestatus;

Q3 select l_orderkey, sum(l_extendedprice (1 - l_discount)) as revenue, o_orderdate,

o_shippriority from customer, orders, lineitem where c_mktsegment = ’BUILDING’ and

c_custkey = o_custkey and l_orderkey = o_orderkey and o_orderdate < date ’1995-03-15’ and

l_shipdate > date ’1995-03-15’ group by l_orderkey, o_orderdate, o_shippriority order by

revenue desc, o_orderdate;

Q6 select sum(l_extendedpricel_discount) as revenue from lineitem where l_shipdate >= ’1994-

01-01’ and l_shipdate < ’1994-01-01’ + INTERVAL ’1’ YEAR and l_discount between 0.06 - 0.01

and 0.06 + 0.01 and l_quantity < 24;

Q12 select l_shipmode, sum(case when o_orderpriority = ’1-URGENT’ or o_orderpriority = ’2-HIGH’

then 1 else 0 end) as high_line_count, sum(case when o_orderpriority <> ’1-URGENT’ and

o_orderpriority <> ’2-HIGH’ then 1 else 0 end) as low_line_count from orders, lineitem where

o_orderkey = l_orderkey and l_shipmode in (’MAIL’, ’SHIP’) and l_commitdate < l_receiptdate

and l_shipdate < l_commitdate and l_receiptdate >= date ’1994-01-01’ and l_receiptdate <
date ’1994-01-01’ + interval ’1’ year group by l_shipmode order by l_shipmode;

Q14 select 100.00 sum(case when p_type like ’PROMO%’ then l_extendedprice (1 - l_discount) else 0

end) / sum(l_extendedprice (1 - l_discount)) as promo_revenue from lineitem, part where

l_partkey = p_partkey and l_shipdate >= date ’1995-09-01’ and l_shipdate < date ’1995-09-

01’ + interval ’1’ month;

Q17 select sum(l_extendedprice) / 7.0 as avg_yearly from lineitem, part where p_partkey =

l_partkey and p_brand = ’Brand#23’ and p_container = ’MED BOX’ and l_quantity < (select 0.2 *

avg(l_quantity) from lineitem where l_partkey = p_partkey);

Q19 select sum(l_extendedprice* (1 - l_discount)) as revenue from lineitem, part where

(p_partkey = l_partkey and p_container in (’SM CASE’, ’SM BOX’, ’SM PACK’, ’SM PKG’) and

l_quantity >= 0 and l_quantity <= 10 and p_size between 1 and 5 and l_shipmode in (’AIR’, ’AIR

REG’) and l_shipinstruct = ’DELIVER IN PERSON’) or (p_partkey = l_partkey and p_container in

(’MED BAG’, ’MED BOX’, ’MED PKG’, ’MED PACK’) and l_quantity >= 11 and l_quantity <= 20 and

p_size between 1 and 10 and l_shipmode in (’AIR’, ’AIR REG’) and l_shipinstruct = ’DELIVER IN

PERSON’) or (p_partkey = l_partkey and p_container in (’LG CASE’, ’LG BOX’, ’LG PACK’, ’LG

PKG’) and l_quantity >= 21 and l_quantity <= 30 and p_size between 1 and 15 and l_shipmode in

(’AIR’, ’AIR REG’) and l_shipinstruct = ’DELIVER IN PERSON’);

LIU ETAL.: EXPLORING QUERY PROCESSING ON CPU-GPU INTEGRATED EDGE DEVICE 4065

Authorized licensed use limited to: Renmin University. Downloaded on November 03,2022 at 07:09:15 UTC from IEEE Xplore. Restrictions apply.

achieve a comprehensive understanding of FineQuery, we
also conduct experiments on an integrated architecture,
AMD A10-7850K, which integrates CPU and GPU on the
same chip. In addition, we compare with a discrete CPU-
GPU platform, equipped with an Intel i7-8700K CPU and an
Nvidia GeForce GTX1080Ti GPU.

Datasets. TPC-H is a well-known benchmark for data
management systems and it is widely used to evaluate the
query performance of database engines [17], [18]. We evalu-
ate FineQuery on the workloads generated by TPC-H with
different scale factors for the edge platform. The details of
the datasets are shown in Table 2.

Benchmarks.We use seven typical queries fromTPC-H [23]
for evaluation. Q1 shows the amount of billed, shipped and
returned business. Q3 extracts the top ten unshipped orders.
Q6 quantifies the revenue increase due to removing dis-
counts. Q12 explores whether using less expensive shipping
modes has a negative influence on critical-priority orders.
Q14 calculates the revenue percentage from promotional
activities. Q17 calculates the average annual revenue lost
due to the no longer filled orders. Q19 retrieves the accumu-
lative avenue by items transmitted on air and delivered in
person. These seven queries cover most of the operators. The
details of the seven queries are shown in Table 1.

7.2 Performance

We report the performance of latency and bandwidth utili-
zation of FineQuery in this part.

Latency. We show the latency comparison result in
Fig. 11. Fig. 11a reports the latency result on the Jetson plat-
form, while Fig. 11b reports the latency result on the A10-
7850K platform. In this work, latency is defined as the end-
to-end duration from the time a query starts to the time it
ends. In general, we have the following observations.

First, FineQuery can achieve performance benefits in all
cases. In general, FineQuery can reduce the latency by 42.81%

on average. Compared with “CPU-only”, FineQuery reduces
the latency by 56.13%. Compared with “GPU-only”, Fine-
Query reduces the latency by 29.48% on average. Take Q17
for illustration; the query mainly contains three selection
operators and a join operator.With FineQuery, the three selec-
tion operators take about 50ms, and the join operator takes
35ms onDataset A.Without FineQuery, they could take up to
381ms and 238ms onDataset A, respectively.

Second, we find that FineQuery exhibits various perfor-
mance behavior in different queries, which relates to the
operator-device preferences. We take Q14 and Q17 for com-
parison. For Q14, FineQuery can reduce the latency by
52.78% over CPU-only, while only 22.24% over GPU-only.
However, as to Q17, it shows an opposite performance trend.

Third, when we compare the performance of the seven
queries under different datasets, we find that the processing
latency of the SQL queries increases with the size of the
datasets. The size of dataset B is 2.51� over dataset A, and
the average latency for dataset B is about 2.40� longer over
that for dataset A. The size of dataset D is 5.06� over dataset
A, and the average latency for dataset D is 5.95� longer over
that of dataset A.

Fourth, when we compare the two CPU-GPU integrated
platforms of Xavier and A10-7850K, we find that the A10-
7850K can provide much lower latency. The reason is that
both the CPU and the GPU on A10-7850K are much power-
ful than those of Xavier. Accordingly, we can conclude that
when the edge device integrates more powerful processors,
the system’s query processing capacity also increases.

Bandwidth Utilization. The comparison result of band-
width utilization is shown in Fig. 12. In this work, band-
width utilization is defined as the size of used data divided
by the processing time. We have the following observations.
First, FineQuery has the highest bandwidth utilization
among all the methods. The average bandwidth utilization
of FineQuery is 3.26 GB/s, which is 2.95� over the GPU-
only method and 1.82� over the CPU-only method. Second,
we find that FineQuery shows different bandwidth utiliza-
tion among these queries. For example, Q3 and Q6 exhibit
high bandwidth utilization, while Q12 and Q17 exhibit rela-
tively low bandwidth utilization. Third, from Fig. 12, we
can observe how the bandwidth utilization changes with
the size of the data. As the amount of data increases, band-
width utilization gradually decreases in all cases, but the
decline rate gradually slows down. Besides, the A10-7850K
integrated platform can provide more bandwidth.

TABLE 2
TPC-H Dataset

Dataset Size Order # Lineitem # Part #

A 1.5 GB 3M 11,997,996 0.4 M
B 3.6 GB 7.5 M 29,999,795 1 M
C 6 GB 12 M 45,999,898 1.4 M
D 7.3 GB 15 M 59,986,052 2 M

Fig. 11. Latency evaluation on different datasets.

4066 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

Authorized licensed use limited to: Renmin University. Downloaded on November 03,2022 at 07:09:15 UTC from IEEE Xplore. Restrictions apply.

7.3 Optimization Analysis

The CPU-GPU integrated edge device features a hierarchical
memory architecture. We investigate the speedups achieved
by our optimization by comparing the execution time with
different strategies on the edge device Jetson AGX Xavier.
We show the comparison results of the query time of select in
Q19 in Table 3. Other operators have similar performance
behaviors. The “CPU version” column records the query
processing time of the CPU version. The column of
“FineQuery (w/o optimization)” represents the query time
without the optimization in Section 6, while the column of
“FineQuery” represents the query time with full optimiza-
tion. The optimized FineQuery outperforms the CPU version
and the FineQuery without optimization by 3.0� and 2.1�,
respectively. The reason is that when sharedmemory is used
effectively, there are fewer thread collisions. Furthermore,
the shared memory, which is the controllable GPU cache,
also improves the efficiency of memory access.

7.4 Comparison With Discrete GPU

In this part, we further compare FineQuery on the Jetson inte-
grated edge device with the query processing on the discrete
GPU. Because FineQuery also targets edge environments,
cost-effectiveness and energy-efficiency are important per-
formance metrics. We evaluate all seven queries on two plat-
formswith the largest dataset for illustration.

Latency. The latency result is shown in Fig. 13. FineQuery
on the Jetson platform can reduce the latency by 56.69%
compared to the query processing on the discrete architec-
ture. Overall, finequery on the Jetson platform can reduce
the latency by For the majority of datasets, FineQuery on
the Jetson platform can save Among them, Q6 has the best
improvement, which reduces the latency by 71.69%.

Energy Efficiency. Thermal design power (TDP) is an indi-
cator used to describe energy consumption. The TDP of the
Jetson platform is only 30 W, while the TDP of the 1080Ti
platform is 250 W. In this work, We define energy efficiency

as the amount of data that can be processed per watt. The
result is shown in Fig. 14a. FineQuery’s energy efficiency is
21� over that of discrete GPU on average.

Cost Effectiveness. We also compare the cost effectiveness
between FineQuery on integrated architecture and query
processing on discrete architecture. In this work, we use the
amount of data that can be processed per US dollar to define
the cost effectiveness. The price of the Jetsson platform is
$699 and the price of 1080Ti is $1100. The result is shown in
Fig. 14b. FineQuery’s performance-per-cost ratio is 4� over
that of the discrete GPU on average.

7.5 Summary of Technical Contributions

FineQuery exhibits clear advantages in latency, bandwidth
utilization, energy efficiency, and cost-effectiveness at the
edge, which can be applied to a wide range of application
scenarios.

First, our carefully designed model can leverage the
advantage of the integrated design of the edge device to
maximize its ability to process queries. The design of Fine-
Query can shed light on the SQL-based query processing in
other CPU-accelerator integrated heterogeneous environ-
ments. Moreover, when it comes to distributed databases
built on edge devices, FineQuery can still work by adding a
data transmission model between nodes. In the new perfor-
mance model, a data transfer network module can be added
to handle communication between edge devices.

Second, we use TPC-H, a hallmark industry benchmark,
in evaluation. The experimental result implies that Fine-
Query can obtain significant performance in complicated
situations. It is especially impressive given the low power
consumption required for the edge device, a manifestation
of its high cost-efficiency and energy-efficiency. As a result,
for today’s query workloads at the edge, our method can

Fig. 12. Bandwidth utilization on different datasets.

TABLE 3
Analysis of Query Time for Select in Q19

Dataset CPU version FineQuery (w/o optimization) FineQuery

A 33 ms 27 ms 10 ms
B 52 ms 34 ms 24 ms
C 156 ms 55 ms 38 ms
D 162 ms 103 ms 46 ms Fig. 13. Energy efficiency comparison of FineQuery on integrated archi-

tecture and query processing on discrete architecture.

LIU ETAL.: EXPLORING QUERY PROCESSING ON CPU-GPU INTEGRATED EDGE DEVICE 4067

Authorized licensed use limited to: Renmin University. Downloaded on November 03,2022 at 07:09:15 UTC from IEEE Xplore. Restrictions apply.

significantly reduce processing latency and improve user
response experience.

Third, we implement both the CUDA and OpenCL ver-
sions of FineQuery, so FineQuery can adjust to a wide range
of HPC platforms. This effectively demonstrates its portabil-
ity and the breadth of the application scope of FineQuery.

8 RELATED WORK

Query processing [10], [11], [12], [13], [24], [25], [26], [27],
[28], [29], and heterogeneous systems [3], [4], [20], [30], [31],
[32], [33], [34], [35], [36], [37], [38], [39], [40], [41], [42], [43],
[44] are hot research topics in recent years. The closest
works to ours are FineStream [3], [4] and FinePar [33], [34].
FineStream [3] is a fine-grained window-based stream proc-
essing engine, and is built on CPU-GPU integrated architec-
tures. FineStream supports queries on stream data, and
processes stream data at batch granularity. It distributes the
operators of a query to different devices via a performance
model. Similarly, both FineStream and FineQuery belong to
the continuous operator model, in contrast to the bulk-syn-
chronous parallel model [19], [45]. However, FineStream
and FineQuery differ in three major aspects. First, their
application scenarios are different. FineStream focuses on
querying stream data, but FineQuery focuses on the proc-
essing of static data, whose queries are more complicated.
Second, their models are different. For example, FineQuery
does not have the concepts of widow and batch as in Fine-
Stream. Third, FineQuery also targets edge devices, where
cost-effectiveness and energy-efficiency are important. As
to FinePar [34], it is a fine-grained workload partitioning
framework targeting irregular applications, such as SpMV
and BFS. FinePar is also built on CPU-GPU integrated archi-
tectures. Because GPU is sensitive to irregular workload, we
distribute the regular part of the workload to GPU while
remain the irregular part to CPU to achieve high perfor-
mance. Different from FinePar, FineQuery focuses on data
processing in database domain and co-runs different opera-
tors of kernels on different devices, instead of co-running
the same kernel.

Fine-Grained Data Processing. As CPU-GPU integrated
architectures have been proved to be of great use to various
domains, many works have been conducted on fine-grained
data processing on CPU-GPU integrated architectures.
Zhang et al. [46] studied the co-running performance on
CPU-GPU integrated architectures, and then developed a co-
running benchmark and a performance prediction model
[22]. Moreover, fine-grained stream data processing [3], [4]
and irregular workload partitioning [33], [34] have also been

developed. Popular algorithms can also benefit from the
CPU-GPU integrated architectures. For example, Daga et al.
[47] developed a hybrid BFS algorithm, where top-down tra-
versal is conducted on CPU and bottom-up traversal is con-
ducted on GPU. Zhang et al. [48] further developed a
performance model to describe the hybrid BFS algorithm on
the integrated architectures. Since machine learning becomes
a hot research topic in recent years, Zhang et al. [49] devel-
oped a machine learning benchmark, called iMLBench, for
studying the performance of machine learning workloads on
the integrated architectures.

Heterogeneous Query Processing. CPU-GPU integrated
architectures can accelerate database applications, and
many researchers apply integrated architectures to query
processing. Hetherington et al. [50] characterized the perfor-
mance of key-value store applications on integrated architec-
tures, and exhibited the benefits of integrated architectures
over discrete architectures. He et al. [51] proposed an in-
cache query co-processing method, which utilizes CPU to
assist GPU to cache data, targeting integrated architectures
with shared last level cache. He et al. [2] developed a novel
hash join algorithmwith CPU and GPU co-running in differ-
ent steps on integrated architectures. Zhang et al. [52] further
proposed DIDO, which is a dynamic pipeline for in-memory
key-value stores on integrated architectures. Daga et al. [53]
developed a parallel B+ tree algorithm on integrated archi-
tectures. Wang et al. [54] proposed a CPU-FPGA heteroge-
neous system for handling distance-related algorithms (e.g.,
K-means andKNN). Chen et al. [55] developed aMapReduce
framework, utilizing both CPU and GPU on integrated
architectures.

CPU-GPU Integrated Edge Computing. There is a large
amount of work on integrated edge computing in recent
years. For example, Ukidave et al. [56] evaluated the CPU-
GPU integrated edge device, Nvidia Jetson TK1, in HPC
domain. Lee et al. [57] applied the Jetson TX1 edge device
for car plate recognition. Rungsuptaweekoon et al. [58] eval-
uated the power efficiency of machine learning inferences
on Jetson TX2. Amert et al. [59] studied the scheduling prob-
lem on Nvidia TX2. Davidson et al. [60] accelerated the error
resilient image processing application on the Jetson TX1
edge device. Mittal [61] surveyed the deep learning models
built on Nvidia Jetson platforms. Jose et al. [62] developed
FaceNet and MTCNN on Jetson TX2.

9 CONCLUSION

Integrated architectures have shown great promise in edge
computing. Since the CPU and GPU share the same unified
memory, data transmission via PCIe has been eliminated,
and CPU and GPU can perform fine-grained cooperation.
We apply CPU-GPU integrated edge device to fine-grained
query processing and exhibit the benefits of utilizing CPU-
GPU co-running as well as zero-copy optimization. Experi-
ments show that FineQuery achieves 42.81% performance
benefits over the current methods.

REFERENCES

[1] JETSON XAVIER NX, 2020. [Online]. Available: https://www.
nvidia.com/en-us/autonomous-machines/embedded-systems/
jetson-xavier-nx/

Fig. 14. Analysis of energy efficiency and cost effectiveness.

4068 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

Authorized licensed use limited to: Renmin University. Downloaded on November 03,2022 at 07:09:15 UTC from IEEE Xplore. Restrictions apply.

https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-nx/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-nx/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-nx/

[2] J. He, M. Lu, and B. He, “Revisiting co-processing for hash joins
on the coupled CPU-GPU architecture,” Proc. VLDB Endowment,
vol. 6, no. 10, pp. 889–900, 2013.

[3] F. Zhang et al., “FineStream: Fine-grained window-based stream
processing on CPU-GPU integrated architectures,” in Proc. USE-
NIX Annu. Tech. Conf., 2020, pp. 633–647.

[4] F. Zhang et al., “Fine-grained multi-query stream processing on
integrated architectures,” IEEE Trans. Parallel Distrib. Syst., vol. 32,
no. 9, pp. 2303–2320, Sep. 2021.

[5] D. Wang, F. Zhang, W. Wan, H. Li, and X. Du, “FineQuery: Fine-
grained query processing on CPU-GPU integrated architectures,”
in Proc. IEEE Int. Conf. Cluster Comput., 2021, pp. 355–365.

[6] K. Jaiswal, S. Sobhanayak, A. K. Turuk, S. L. Bibhudatta, B. K.
Mohanta, and D. Jena, “An IoT-cloud based smart healthcare
monitoring system using container based virtual environment in
edge device,” in Proc. Int. Conf. Emerg. Trends Innov. Eng. Technol.
Res., 2018, pp. 1–7.

[7] Y. Yang, Q. Cao, andH. Jiang, “EdgeDB: An efficient time-series data-
base for edge computing,” IEEE Access, vol. 7, pp. 142 295–142 307,
2019.

[8] J. Paparrizos et al., “VergeDB: A database for IoT analytics on edge
devices,” in Proc. Conf. Innov. Data Syst. Res., 2021, pp. 1–8.

[9] Jetson AGX Xavier Developer Kit, 2020. [Online]. Available:
https://developer.nvidia.com/embedded/jetson-agx-xavier-
developer-kit

[10] T. F. Wenisch, M. Ferdman, A. Ailamaki, B. Falsafi, and A. Mosho-
vos, “Practical off-chip meta-data for temporal memory stream-
ing,” in Proc. IEEE 15th Int. Symp. High Perform. Comput. Archit.,
2009, pp. 79–90.

[11] B. Chandramouli et al., “Trill: A high-performance incremental
query processor for diverse analytics,” Proc. VLDB Endowment,
vol. 8, pp. 401–412, 2014.

[12] S. Breß and G. Saake, “Why it is time for a HyPE: A hybrid query
processing engine for efficient GPU coprocessing in DBMS,” Proc.
VLDB Endowment, vol. 6, pp. 1398–1403, 2013.

[13] P. Bakkum and K. Skadron, “Accelerating SQL database opera-
tions on a GPU with CUDA,” in Proc. 3rd Workshop Gen.-Purpose
Comput. Graph. Process. Units, 2010, pp. 94–103.

[14] R. Fang et al., “GPUQP: Query co-processing using graphics pro-
cessors,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2007,
pp. 1061–1063.

[15] C. Root and T. Mostak, “MapD: A GPU-powered big data analyt-
ics and visualization platform,” in Proc. ACM SIGGRAPH Talks,
2016, pp. 1–2.

[16] S. Zhang et al., “OmniDB: Towards portable and efficient query
processing on parallel CPU/GPU architectures,” Proc. VLDB
Endowment, vol. 6, no. 12, pp. 1374–1377, 2013.

[17] J. Paul, J. He, and B. He, “GPL: AGPU-based pipelined query proc-
essing engine,” inProc. Int. Conf.Manage. Data, 2016, pp. 1935–1950.

[18] P. Boncz, T. Neumann, and O. Erling, “TPC-H analyzed: Hidden
messages and lessons learned from an influential benchmark,” in
Proc. Technol. Conf. Perform. Eval. Benchmarking, 2013, pp. 61–76.

[19] S. Zhang et al., “Hardware-conscious stream processing: A
survey,” ACM SIGMOD Rec., vol. 48, no. 4, pp. 18–29, 2020.

[20] A. Koliousis et al., “SABER: Window-based hybrid stream proc-
essing for heterogeneous architectures,” in Proc. Int. Conf. Manage.
Data, 2016, pp. 555–569.

[21] D. Guide, “CUDA C programming guide,” NVIDIA, Santa Clara,
CA,USA, Jul. 2013.

[22] F. Zhang, J. Zhai, B. He, S. Zhang, andW. Chen, “Understanding co-
running behaviors on integrated CPU/GPU architectures,” IEEE
Trans. Parallel Distrib. Syst., vol. 28, no. 3, pp. 905–918,Mar. 2017.

[23] TPC-H Vesion 2 and Version 3, 2022. [Online]. Available: https://
www.tpc.org/tpch/

[24] W. Xia, C. Wei, Z. Li, X. Wang, and X. Zou, “NetSync: A network
adaptive and deduplication-inspired delta synchronization
approach for cloud storage services,” IEEE Trans. Parallel Distrib.
Syst., vol. 33, no. 10, pp. 2554–2570, Oct. 2022.

[25] W. Xia et al., “FastCDC: A fast and efficient content-defined
chunking approach for data deduplication,” in Proc. USENIX
Conf. Usenix Annu. Tech. Conf., 2016, pp. 101–114.

[26] F. Zhang et al., “TADOC: Text analytics directly on compression,”
VLDB J., vol. 30, pp. 163–188, 2021.

[27] F. Zhang, J. Zhai, X. Shen, O. Mutlu, and X. Du, “POCLib: A high-
performance framework for enabling near orthogonal processing
on compression,” IEEE Trans. Parallel Distrib. Syst., vol. 33, no. 2,
pp. 459–475, Feb. 2022.

[28] F. Zhang et al., “Efficient document analytics on compressed data:
Method, challenges, algorithms, insights,” Proc. VLDB Endowment,
vol. 11, pp. 1522–1535, 2018.

[29] F. Zhang et al., “CompressDB: Enabling efficient compressed data
direct processing for various databases,” in Proc. ACM SIGMOD
Int. Conf. Manage. Data, 2022.

[30] Z. Tang and Y. Won, “Multithread content based file chunking
system in CPU-GPGPU heterogeneous architecture,” in Proc. 1st
Int. Conf. Data Compression Commun. Process., 2011, pp. 58–64.

[31] W. Xia et al., “A comprehensive study of the past, present, and future
of data deduplication,” Proc. IEEE, vol. 104, no. 9, pp. 1681–1710,
Sep. 2016.

[32] W. Xia et al., “The design of fast content-defined chunking for data
deduplication based storage systems,” IEEE Trans. Parallel Distrib.
Syst., vol. 31, no. 9, pp. 2017–2031, Sep. 2020.

[33] F. Zhang, J. Zhai, B. Wu, B. He, W. Chen, and X. Du, “Automatic
irregularity-aware fine-grained workload partitioning on inte-
grated architectures,” IEEE Trans. Knowl. Data Eng., vol. 33, no. 3,
pp. 867–881, Mar. 2021.

[34] F. Zhang, B. Wu, J. Zhai, B. He, and W. Chen, “FinePar: Irregular-
ity-aware fine-grained workload partitioning on integrated
architectures,” in Proc. IEEE/ACM Int. Symp. Code Gener. Optim.,
2017, pp. 27–38.

[35] F. Zhang et al., “G-TADOC: Enabling efficient GPU-based text
analytics without decompression,” in Proc. IEEE 37th Int. Conf.
Data Eng., 2021, pp. 1679–1690.

[36] S. Tang, B. He, S. Zhang, and Z. Niu, “Elastic multi-resource fair-
ness: Balancing fairness and efficiency in coupled CPU-GPU
architectures,” in Proc. Int. Conf. High Perform. Comput. Netw. Stor-
age Anal., 2016, pp. 875–886.

[37] S. Tang, B. He, C. Yu, Y. Li, and K. Li, “A survey on spark ecosys-
tem: Big data processing infrastructure, machine learning, and
applications,” IEEE Trans. Knowl. Data Eng., vol. 34, no. 1, pp. 71–91,
Jan. 2022.

[38] S. Tang, C. Yu, and Y. Li, “Fairness-efficiency scheduling for cloud
computing with soft fairness guarantees,” IEEE Trans. Cloud Com-
put., to be published, doi: 10.1109/TCC.2020.3021084.

[39] B. Feng et al., “APNN-TC: Accelerating arbitrary precision neural
networks on ampere GPU tensor cores,” in Proc. Int. Conf. High
Perform. Comput. Netw. Storage Anal., 2021, pp. 1–13.

[40] B. Feng et al., “Palleon: A runtime system for efficient video proc-
essing toward dynamic class skew,” in Proc. USENIX Annu. Tech.
Conf., 2021, pp. 427–441.

[41] Y. Wang et al., “GNNAdvisor: An adaptive and efficient runtime
system for GNN acceleration on GPUs,” in Proc. 15th USENIX
Symp. Operating Syst. Des. Implementation, 2021, pp. 515–531.

[42] Y. Wang, B. Feng, and Y. Ding, “QGTC: Accelerating quantized
graph neural networks via GPU tensor core,” in Proc. 27th ACM
SIGPLAN Symp. Princ. Pract. Parallel Program., 2022, pp. 107–119.

[43] F. Zhang, Z. Chen, C. Zhang, A. C. Zhou, J. Zhai, and X. Du, “An
efficient parallel secure machine learning framework on GPUs,”
IEEE Trans. Parallel Distrib. Syst., vol. 32, no. 9, pp. 2262–2276,
Sep. 2021.

[44] Z. Pan et al., “Exploring data analytics without decompression on
embedded GPU systems,” IEEE Trans. Parallel Distrib. Syst.,
vol. 33, no. 7, pp. 1553–1568, Jul. 2022.

[45] S. Venkataraman et al., “Drizzle: Fast and adaptable stream proc-
essing at scale,” in Proc. 26th Symp. Operating Syst. Princ., 2017,
pp. 374–389.

[46] F. Zhang, J. Zhai, W. Chen, B. He, and S. Zhang, “To co-run, or not
to co-run: A performance study on integrated architectures,” in
Proc. IEEE 23rd Int. Symp. Model. Anal. Simul. Comput. Telecommun.
Syst., 2015, pp. 89–92.

[47] M. Daga, M. Nutter, and M. Meswani, “Efficient breadth-first
search on a heterogeneous processor,” in Proc. IEEE Int. Conf. Big
Data, 2014, pp. 373–382.

[48] F. Zhang et al., “An adaptive breadth-first search algorithm on inte-
grated architectures,” J. Supercomput., vol. 74, no. 11, pp. 6135–6155,
2018.

[49] C. Zhang, F. Zhang, X. Guo, B. He, X. Zhang, and X. Du,
“iMLBench: A machine learning benchmark suite for CPU-GPU
integrated architectures,” IEEE Trans. Parallel Distrib. Syst., vol. 32,
no. 7, pp. 1740–1752, Jul. 2021.

[50] T. H. Hetherington, T. G. Rogers, L. Hsu, M. O’Connor, and T. M.
Aamodt, “Characterizing and evaluating a key-value store appli-
cation on heterogeneous CPU-GPU systems,” in Proc. IEEE Int.
Symp. Perform. Anal. Syst. Softw., 2012, pp. 88–98.

LIU ETAL.: EXPLORING QUERY PROCESSING ON CPU-GPU INTEGRATED EDGE DEVICE 4069

Authorized licensed use limited to: Renmin University. Downloaded on November 03,2022 at 07:09:15 UTC from IEEE Xplore. Restrictions apply.

https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit
https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit
https://www.tpc.org/tpch/
https://www.tpc.org/tpch/
http://dx.doi.org/10.1109/TCC.2020.3021084

[51] J. He, S. Zhang, and B. He, “In-cache query co-processing on cou-
pled CPU-GPU architectures,” Proc. VLDB Endowment, vol. 8,
no. 4, pp. 329–340, 2014.

[52] K. Zhang, J. Hu, B. He, and B. Hua, “DIDO: Dynamic pipelines for
in-memory key-value stores on coupled CPU-GPU architectures,”
in Proc. IEEE 33rd Int. Conf. Data Eng., 2017, pp. 671–682.

[53] M. Daga and M. Nutter, “Exploiting coarse-grained parallelism in
B+ tree searches on an APU,” in Proc. SC Companion: High Perform.
Comput. Netw. Storage Anal., 2012, pp. 240–247.

[54] Y. Wang, B. Feng, G. Li, L. Deng, Y. Xie, and Y. Ding, “STPAcc:
Structural TI-based pruning for accelerating distance-related algo-
rithms on CPU-FPGA platforms,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 41, no. 5, pp. 1358–1370, May 2022.

[55] L. Chen, X. Huo, and G. Agrawal, “Accelerating MapReduce on a
coupled CPU-GPU architecture,” in Proc. Int. Conf. High Perform.
Comput. Netw. Storage Anal., 2012, pp. 1–11.

[56] Y. Ukidave, D. Kaeli, U. Gupta, and K. Keville, “Performance of
the NVIDIA Jetson TK1 in HPC,” in Proc. IEEE Int. Conf. Cluster
Comput., 2015, pp. 533–534.

[57] S. Lee, K. Son, H. Kim, and J. Park, “Car plate recognition based
on CNN using embedded system with GPU,” in Proc. 10th Int.
Conf. Hum. Syst. Interact., 2017, pp. 239–241.

[58] K. Rungsuptaweekoon, V. Visoottiviseth, and R. Takano,
“Evaluating the power efficiency of deep learning inference on
embedded GPU systems,” in Proc. 2nd Int. Conf. Inf. Technol., 2017,
pp. 1–5.

[59] T. Amert, N. Otterness, M. Yang, J. H. Anderson, and F. D. Smith,
“GPU scheduling on the NVIDIA TX2: Hidden details revealed,”
in Proc. IEEE Real-Time Syst. Symp., 2017, pp. 104–115.

[60] R. L. Davidson and C. P. Bridges, “Error resilient GPU accelerated
image processing for space applications,” IEEE Trans. Parallel Dis-
trib. Syst., vol. 29, no. 9, pp. 1990–2003, Sep. 2018.

[61] S. Mittal, “A survey on optimized implementation of deep learn-
ing models on the NVIDIA Jetson platform,” J. Syst. Archit.,
vol. 97, pp. 428–442, 2019.

[62] E. Jose, M. Greeshma, M. T. P. Haridas, and M. H. Supriya, “Face
recognition based surveillance system using FaceNet and
MTCNN on Jetson TX2,” in Proc. 5th Int. Conf. Adv. Comput. Com-
mun. Syst., 2019, pp. 608–613.

Jiesong Liu is a research assistant with the Key
Laboratory of Data Engineering and Knowledge
Engineering (MOE), Renmin University of China.
He joined MOE in 2020. His major research inter-
ests include database systems, and parallel and
distributed systems.

Feng Zhang received the bachelor’s degree from
Xidian University, in 2012, and the PhD degree in
computer science fromTsinghuaUniversity, in 2017.
He is an associate professor with DEKE Lab and
the School of Information, Renmin University of
China. His major research interests include data-
base systems, and parallel and distributed systems.

Hourun Li is a research assistant with the Key
Laboratory of Data Engineering and Knowledge
Engineering (MOE), Renmin University of China.
He joined the Key Laboratory of Data Engineer-
ing and Knowledge Engineering (MOE) in 2020.
His major research interests include database
systems, and parallel and distributed systems.

Dalin Wang received the bachelor’s degree from
the Renmin University of China, in 2020. He is cur-
rently working toward the master degree with the
RenminUniversity of China. He joined the Key Lab-
oratory of Data Engineering and Knowledge Engi-
neering (MOE) in 2019. His major research
interests include database systems, and parallel
and distributed systems.

Weitao Wan received the bachelor’s degree from
the Renmin University of China, in 2022, and is a
research assistant with the Key Laboratory of Data
Engineering and Knowledge Engineering (MOE),
Renmin University of China. He joined MOE in
2019. His major research interests include data-
base systems and distributed systems.

Xiaokun Fang received the bachelor’s degree
from the Renmin University of China, in 2022. He is
currently working toward the master degree with
the Renmin University of China. He joined the Key
Laboratory of Data Engineering and Knowledge
Engineering (MOE) in 2020. His major research
interests include parallel and distributed systems
andmachine learning.

Jidong Zhai received the BS degree in computer
science from the University of Electronic Science
and Technology of China, in 2003, and the PhD
degree in computer science from Tsinghua Uni-
versity, in 2010. He is an associate professor with
the Department of Computer Science and Tech-
nology, Tsinghua University. His research inter-
ests include performance evaluation for high
performance computers, performance analysis,
and modeling of parallel applications.

Xiaoyong Du received the BS degree from Hang-
zhou University, Zhejiang, China, in 1983, the ME
degree from the Renmin University of China, Bei-
jing, China, in 1988, and the PhD degree from the
Nagoya Institute of Technology, Nagoya, Japan, in
1997. He is currently a professor with the School of
Information, Renmin University of China. His cur-
rent research interests include databases and intel-
ligent information retrieval.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

4070 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

Authorized licensed use limited to: Renmin University. Downloaded on November 03,2022 at 07:09:15 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

