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ABSTRACT
Consider an edge-weighted graph, and a number of properties of

interests (PoIs). Each vertex has a probability of exhibiting each

PoI. The joint probability that a set of vertices exhibits a PoI is the

probability that this set contains at least one vertex that exhibits

this PoI. The probabilistic group Steiner tree problem is to find a

tree such that (i) for each PoI, the joint probability that the set of

vertices in this tree exhibits this PoI is no smaller than a threshold

value, e.g., 0.97; and (ii) the total weight of edges in this tree is the

minimum. Solving this problem is useful for mining various graphs

with uncertain vertex properties, but is NP-hard. The existing work

focuses on certain cases, and cannot perform this task. To meet this

challenge, we propose 3 approximation algorithms for solving the

above problem. Let |Γ | be the number of PoIs, and 𝜉 be an upper

bound of the number of vertices for satisfying the threshold value

of exhibiting each PoI. Algorithms 1 and 2 have tight approxima-

tion guarantees proportional to |Γ | and 𝜉 , and exponential time

complexities with respect to 𝜉 and |Γ |, respectively. In comparison,

Algorithm 3 has a looser approximation guarantee proportional to,

and a polynomial time complexity with respect to, both |Γ | and 𝜉 .
Experiments on real and large datasets show that the proposed al-

gorithms considerably outperform the state-of-the-art related work

for finding probabilistic group Steiner trees in various cases.
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1 INTRODUCTION
Background: Given an edge-weighted graph𝐺 and a number of

vertex groups, the classical group Steiner tree problem [34] is to find
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a tree in𝐺 such that (i) this tree contains at least one vertex in each

group; and (ii) the total weight of edges in this tree is the minimum.

Despite the fact that this problem was originally studied for the

design of very-large-scale integrated circuits (e.g., [19, 20, 34]), a
lot of recent work finds this problem useful for various data mining

applications, such as information retrieval in relational databases

(e.g., [11, 13, 23, 25, 37]), team formation in social networks (e.g.,
[21, 32, 37, 40]), and pathway identification in metabolic networks

(e.g., [16]). We describe an example as follows.

Consider a relational database graph, where vertices and edges

represent tuples and foreign key references between tuples, re-

spectively. Each tuple contains some information, including some

keywords, e.g., each tuple contains the information of a paper (or

a movie), including the topic keywords of this paper (or the genre

keywords of this movie). Each edge is associated with a weight

representing the distance between two tuples. Consider a user who

wants to find papers (or movies) related to an input set Γ of key-

words, we can help the user find such papers (or movies) by solving

the classical group Steiner tree problem for |Γ | groups such that

each group is the set of vertices associated with a specific keyword

in Γ. Since the solution tree contains at least one vertex in each

group, the vertices in this tree correspond to a set of tuples that

collectively cover all the keywords in Γ, i.e., these tuples contain
the information of the found papers (or movies) related to the input

keywords. By minimizing the total weight of edges in this tree, we

can reduce the distances between tuples, for ensuring that these

tuples correspond to a strong and concise relationship among all

the input keywords (e.g., [11, 13, 23, 25, 37]). For instance, in Figure

1, consider a user who wants to find paper(s) related to two key-

words: {Database; Algorithm}, if the single tuple 𝑣1 contains both

keywords, then, to help this user find paper(s), we could return

{𝑣1} as the solution to the classical group Steiner tree problem, in

which case 𝑣1 contains the information of the found paper.

Motivation: In the above work, each vertex group corresponds to

a property of interest (PoI), and it is implicitly assumed that each

vertex in a group exhibits the PoI corresponding to this group with

certainty. For instance, in the above work on relational databases,

each vertex group corresponds to a keyword, e.g., a topic keyword
of papers, and it is implicitly assumed that each vertex, i.e., tuple,
in this group contains the information related to this keyword

with certainty. This assumption only holds when we are certain on

vertex properties, e.g., when we are certain on the topics of papers.

However, we often have uncertain or probabilistic vertex properties

in practice. A reason is that current artificial intelligence techniques

usually label vertices in a statistic and probabilistic way, e.g., the
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Figure 1: A tree comprising of three vertices 𝑣1, 𝑣2, 𝑣3. Given
two properties of interest: PoI1 (Database) and PoI2 (Algo-
rithm). The three vertices have the probabilities of 0.8, 0.5, 0.0
for exhibiting PoI1, respectively, and the probabilities of
0.4, 0.0, 0.9 for exhibiting PoI2, respectively. The tree has the
probabilities of 1 − (1 − 0.8) · (1 − 0.5) = 0.9 and 1 − (1 − 0.4) ·
(1 − 0.9) = 0.94 for exhibiting PoI1 and PoI2, respectively.

developers of the AMiner data platform [1] use natural language

processing techniques to determine the topics (or fields of study)

of papers probabilistically [2, 38]. Another reason is that we are

uncertain on the qualifications of vertex properties in many cases,

e.g.,when each tuple contains the information of a movie, including

the genre keywords of this movie, we are usually uncertain on

whether a movie with a specific keyword can satisfy a user who

inserts this keyword, and can only guess that a high rating of the

movie indicates a high probability that it satisfies the user.

In such probabilistic cases, for each group 𝑔 that corresponds to

a PoI, we consider that each vertex in 𝑔 has a positive probability of

exhibiting this PoI, while each vertex not in 𝑔 has a zero probability

of exhibiting this PoI. Like a lot of existing work on probabilistic

data management (e.g., [8, 14, 42, 43]), we consider that different
probability values do not correlate with each other, which suits

various cases, e.g., when the topics of a paper are conjectured by

extracting topic-related text features from the specific contents of

this paper (e.g., [9, 38]), different papers have different and inde-

pendent probabilities of being in a topic, and a paper has different

and independent probabilities of being in different topics.

Then, we consider the probability that a tree exhibits a PoI as

the probability that there is at least one vertex in this tree that

exhibits this PoI, as shown in Figure 1. Given a threshold value 𝑏,

e.g., 𝑏 = 0.9; and a group that corresponds to a PoI, if the probability

that a tree exhibits this PoI is no smaller than 𝑏, then we say that

this tree or the set of vertices in this tree satisfactorily covers this
group, e.g., in Figure 1, consider the two groups {𝑣1, 𝑣2} and {𝑣1, 𝑣3}
that correspond to PoI1 and PoI2, respectively, if 𝑏 = 0.9, then the

tree {(𝑣1, 𝑣2), (𝑣1, 𝑣3)} satisfactorily covers both groups. Given a

number of groups and a threshold value 𝑏, an intuitive problem is to

find a minimum-weight tree that satisfactorily covers every group.

Solving this problem is meaningful in various cases, e.g., for finding
a set of papers that covers every input topic with a high probability (

e.g., Figure 1), or for finding a set of movies that satisfies the user for

every input genre with a high probability. We refer to this problem

as the probabilistic group Steiner tree problem, which extends the

classical group Steiner tree problem probabilistically.

The existing group Steiner tree algorithms (e.g., [13, 17, 19–21,
25, 34, 37]) focus on finding classical group Steiner trees, which may

not satisfactorily cover every group in probabilistic cases. A natural

method of adapting these algorithms to find a feasible probabilistic

group Steiner tree that satisfactorily covers every group is to (i) find

a classical group Steiner tree that contains at least one vertex in each

group; and (ii) for each group that this tree does not satisfactorily

cover, iteratively merge shortest paths between this tree and nearby

vertices in this group into this tree, until this tree satisfactorily

covers this group. However, the later experiments show that this

method produces solutions with unfavorably large weights, which

indicates that the existing group Steiner tree algorithms cannot

handle probabilistic cases.

The existing work on probabilistic databases does not address

this issue. First, most existing work on probabilistic databases (e.g.,
[8, 14, 24, 29, 30, 35, 36, 39, 42]) focuses on querying non-graph-

structured data, such as querying tuples with high probabilities of

containing a keyword (e.g., [14, 24, 29, 35, 39]), and querying worlds,
i.e., combinations of tuples, with high probabilities of existence

(e.g., [8, 30, 36, 42]). Second, the other work that focuses on graph-

structured data (e.g., [31, 33, 43–45]) performs different tasks from

finding group Steiner trees, such as finding maximal cliques [45],

frequent subgraph patterns [33, 43], trees with high probabilities of

being top-𝑘 maximum-weight trees [44], and skyline graphs with

high probabilities of not being dominated by other graphs based

on certain score functions [31]. As a result, new work is required

for solving the probabilistic group Steiner tree problem.

Our contributions: The probabilistic group Steiner tree prob-

lem is a generalization of the classical group Steiner tree problem.

Since the classical group Steiner tree problem is NP-hard [20], the

probabilistic group Steiner tree problem is NP-hard as well, which

indicates the usefulness of developing approximation algorithms

for finding probabilistic group Steiner trees. We develop three such

algorithms as follows.

• First, we develop an algorithm:DUAL, that has an approximation

guarantee of 𝜏 ·max{1, |Γ | − 1}, and a time complexity of

𝑂

(
|Γ |𝜉2 |𝑉 |2𝜉 ·

(
3
2𝜉 |𝑉 | + 2

2𝜉 |𝑉 | · (2𝜉 |𝑉 | + |𝐸 | + |𝑉 | log |𝑉 |)
))
,

where 𝜏 ∈ [1,∞) is a parameter; |𝑉 | and |𝐸 | are the numbers of

vertices and edges in 𝐺 , respectively; 𝜉 is the smallest natural

number that is larger than or equal to log(1−𝑝𝑚𝑖𝑛) (1 − 𝑏), and
𝑝𝑚𝑖𝑛 is the minimum positive probability value of vertices.

• To achieve a higher efficiency than DUAL, we develop another

algorithm: GRE-TREE, that has an approximation guarantee of

𝜏 · 𝜉 , and a time complexity of

𝑂

(
𝜉 · |𝑔𝑚𝑖𝑛 | ·

(
3
|Γ | |𝑉 | + 2

|Γ | |𝑉 | · ( |Γ | |𝑉 | + |𝐸 | + |𝑉 | log |𝑉 |)
))
,

where |𝑔𝑚𝑖𝑛 | is the size of the smallest vertex group.

• GRE-TREE still does not have a sufficiently high efficiency. To

further push the limit of algorithmic efficiency, we develop the

third algorithm: GRE-PATH, that has an approximation guaran-

tee of max{1,∑𝑔∈Γ 𝜉𝑔 − 1}, and a time complexity of

𝑂

(
|𝑔𝑚𝑖𝑛 | ·

∑
𝑔∈Γ

𝜉𝑔 · 𝐿 |𝑉 | + |𝐸 | + |𝑉 | log |𝑉 |
)
,



where 𝜉𝑔 is the smallest natural number that is larger than or

equal to log(1−𝑝𝑔!𝑚𝑖𝑛) (1−𝑏), and 𝑝𝑔!𝑚𝑖𝑛 is the minimum positive

probability value of vertices for covering group 𝑔 ∈ Γ; and 𝐿

is the average number of labels associated with each vertex in

pre-computed hub labels [7, 26, 27] of shortest paths in 𝐺 .

We conduct experiments using real datasets, and show that (i)

DUAL can only be used in tiny graphs with dozens of vertices, and

thus is mainly of theoretical interests; (ii)GRE-TREE produces better
solutions than the other algorithms in practice, and is efficient when

group sizes are small; and (iii) GRE-PATH produces considerably

better solutions than baselines built using state-of-the-art classical

group Steiner tree algorithms, while scaling well to large graphs,

and hence is a more favorable tool than the existing techniques for

finding probabilistic group Steiner trees in various cases.

2 PROBLEM FORMULATION
We consider an undirected graph 𝐺 (𝑉 , 𝐸, 𝑐), where 𝑉 is the set of

vertices, 𝐸 is the set of edges, and 𝑐 is a function which maps each

edge 𝑒 ∈ 𝐸 to a non-negative value 𝑐 (𝑒) that we refer to as edge

weight. We also consider a set Γ of vertex groups. Each group 𝑔 ∈ Γ
corresponds to a PoI, and is the set of vertices that may exhibit

this PoI, and 𝑔 ⊆ 𝑉 . There is a function 𝑝 that maps each pair of

group 𝑔 ∈ Γ and vertex 𝑣 ∈ 𝑔 to a value 𝑝𝑔 (𝑣) ∈ (0, 1], which is

the probability that 𝑣 exhibits the PoI corresponding to 𝑔. For each

vertex 𝑢 ∉ 𝑔, we consider 𝑝𝑔 (𝑢) = 0. As discussed in Section 1, we

consider that different probability values do not correlate with each

other, e.g., for two different vertices 𝑣1 and 𝑣2, 𝑝𝑔 (𝑣1) and 𝑝𝑔 (𝑣2)
do not correlate with each other. This suits various scenarios in

practice. For example, consider a relational database graph where

each of 𝑣1 and 𝑣2 represents a tuple that contains the information

of a paper, and 𝑔 corresponds to a topic keyword. When the topics

of a paper are conjectured by analyzing the specific contents of this

paper (e.g., [9, 38]), different papers have different and independent
probabilities of being in a topic, whichmeans that 𝑝𝑔 (𝑣1) and 𝑝𝑔 (𝑣2)
are independent from each other. In such cases, the joint probability

that a set of vertices 𝑉 ′ ⊆ 𝑉 exhibits the PoI corresponding to 𝑔 is

𝑝𝑔 (𝑉 ′) = 1 −
∏
𝑣∈𝑉 ′

[1 − 𝑝𝑔 (𝑣)] . (1)

In other words, 𝑝𝑔 (𝑉 ′) is the probability that there is at least one

vertex in𝑉 ′
that exhibits the PoI corresponding to𝑔. Given a thresh-

old value 𝑏 ∈ (0, 1] that is close to or equals 1, e.g., 𝑏 = 0.97. If

𝑝𝑔 (𝑉 ′) ≥ 𝑏, then we consider that 𝑉 ′ satisfactorily covers 𝑔.
Like the related work (e.g., [13, 21, 25, 37]), we consider that

different groups may overlap with each other, which suits various

cases where an entity may exhibit multiple PoIs, e.g., a paper may

cover multiple topics or cross multiple fields of study. Then, the sum

of probabilities that a vertex exhibits various PoIs that correspond

to different groups may be larger than 1, e.g., for vertex 𝑣 and groups
𝑔1 and 𝑔2, we may have 𝑝𝑔1 (𝑣) + 𝑝𝑔2 (𝑣) > 1.

We define the probabilistic group Steiner tree problem as the

problem of finding a minimum-weight tree such that the set of

vertices in this tree satisfactorily covers every group in Γ.

Problem 1 (Probabilistic Group Steiner Tree). Given a graph
𝐺 (𝑉 , 𝐸, 𝑐); a set of vertex groups Γ; a probability function 𝑝 ; and a
threshold value 𝑏 ∈ (0, 1], the probabilistic group Steiner tree problem

asks for a tree Θ(𝑉 ′, 𝐸 ′),𝑉 ′ ⊆ 𝑉 , 𝐸 ′ ⊆ 𝐸 such that (i) 𝑝𝑔 (𝑉 ′) ≥ 𝑏 for
every 𝑔 ∈ Γ, i.e., 𝑉 ′ satisfactorily covers every vertex group; and (ii)
the weight of this tree, namely,

𝑐 (Θ) =
∑
𝑒∈𝐸′

𝑐 (𝑒), (2)

is the minimum.

Problem 1 degenerates into the classical group Steiner tree prob-

lem [34] when 𝑝𝑔 (𝑣) = 1 for every 𝑣 ∈ 𝑔 ∈ Γ. Since the classical

group Steiner tree problem is NP-hard [20], Problem 1 is NP-hard

as well. This NP-hardness indicates the usefulness of developing

approximation algorithms for solving Problem 1. We develop three

such algorithms in the following section.

In this paper, we assume that there is at least one feasible solution

to Problem 1 in 𝐺 . Moreover, we assume that 𝐺 is connected. If 𝐺

is not connected, then we can solve Problem 1 in𝐺 as follows: first,

we obtain a solution in each maximal connected component of 𝐺

that contains at least one feasible solution; then, we evaluate all the

obtained solutions, and return the one with the minimum weight.

3 THREE APPROXIMATION ALGORITHMS
In this section, we propose 3 approximation algorithms for solving

Problem 1, dubbed DUAL, GRE-TREE and GRE-PATH, respectively.

3.1 The DUAL algorithm
Here, we develop the dual conquest algorithm, dubbedDUAL. “Dual
conquest” refers to the fact that this algorithm iteratively and greed-

ily merges trees that satisfactorily cover two groups.

Core idea of DUAL.We present an original definition as follows.

Definition 1 (Essential Cover). A subset of vertices 𝑉 ′ ⊆ 𝑉 is
an essential cover of a vertex group 𝑔 ∈ Γ if 𝑉 ′ satisfactorily covers 𝑔,
i.e., 𝑝𝑔 (𝑉 ′) ≥ 𝑏, and any proper subset of 𝑉 ′ does not satisfactorily
cover 𝑔, i.e., 𝑝𝑔 (𝑉 ′′) < 𝑏 for any 𝑉 ′′ ⊂ 𝑉 ′.

Consider a vertex group 𝑔𝑥 ∈ Γ. Let Φ𝑔𝑥 be the set of all essential

covers of 𝑔𝑥 . Suppose that an optimal solution tree contains an

essential cover of 𝑔𝑥 : 𝑉
′ ∈ Φ𝑔𝑥 . Subsequently, consider another

vertex group 𝑔𝑦 ∈ Γ \ 𝑔𝑥 . Suppose that Θ′
is a minimum-weight

tree that contains 𝑉 ′
and at least one essential cover of 𝑔𝑦 . Then,

the weight ofΘ′
is not larger than the weight of an optimal solution

tree, since any optimal solution tree contains 𝑉 ′
and at least one

essential cover of 𝑔𝑦 . We can build a feasible solution tree by merg-

ing minimum-weight trees that satisfactorily cover two groups,

like Θ′
. For example, if Γ = {𝑔𝑥 , 𝑔𝑦, 𝑔𝑧 } and there is an optimal

solution tree that contains 𝑉 ′ ∈ Φ𝑔𝑥 , then we can build a feasible

solution tree through the following two steps. First, we construct

a graph by merging (i) a minimum-weight tree that contains 𝑉 ′

and at least one essential cover of 𝑔𝑦 ; and (ii) a minimum-weight

tree that contains 𝑉 ′
and at least one essential cover of 𝑔𝑧 . Then,

we find a Minimum Spanning Tree (MST) of the merged graph

as a feasible solution tree. In the above process, we merge |Γ | − 1

trees, and the weight of each merged tree is not larger than the

weight of an optimal solution tree. As a result, the weight of the

built feasible solution tree is not larger than |Γ | −1 times the weight

of an optimal solution tree. This idea of iteratively merging trees

that satisfactorily cover two groups is the core idea of DUAL.



Algorithm 1 The DUAL algorithm

Input: a graph 𝐺 (𝑉 , 𝐸, 𝑐), a set of vertex groups Γ, a probability
function 𝑝 , a threshold value 𝑏, and a parameter 𝜏 ∈ R that 𝜏 ≥ 1

Output: an approximate solution tree Θ1

1: Initialize an empty tree Θ1 = ∅, and 𝑐 (Θ1) = ∞
2: Find Φ𝑔 for all 𝑔 ∈ Γ, and Φ𝑔𝑥 that |Φ𝑔𝑥 | = min{|Φ𝑔 | | ∀𝑔 ∈ Γ}
3: for each 𝑉 ′ ∈ Φ𝑔𝑥 do
4: if |Γ | = 1 then
5: Θ𝑉 ′ = 𝑃𝑟𝑢𝑛𝑒𝑑𝐷𝑃 + +(𝐺,𝑉 ′, 𝜏)
6: else
7: Initialize an empty graph 𝐺 ′ = ∅
8: for each 𝑔 ∈ Γ \ 𝑔𝑥 do
9: Initialize an empty tree Θ𝑆𝑇 (𝑉 ′,Φ𝑔) = ∅,

and 𝑐 (Θ𝑆𝑇 (𝑉 ′,Φ𝑔)) = ∞
10: for each 𝑉𝑗 ∈ Φ𝑔 do
11: Θ(𝑉 ′,𝑉𝑗 ) = 𝑃𝑟𝑢𝑛𝑒𝑑𝐷𝑃 + +(𝐺,𝑉 ′ ∪𝑉𝑗 , 𝜏)
12: Θ𝑆𝑇 (𝑉 ′,Φ𝑔) = min{Θ𝑆𝑇 (𝑉 ′,Φ𝑔),Θ(𝑉 ′,𝑉𝑗 )}
13: end for
14: 𝐺 ′ = 𝐺 ′ ∪ Θ𝑆𝑇 (𝑉 ′,Φ𝑔)
15: end for
16: Θ𝑉 ′ = 𝑀𝑆𝑇 (𝐺 ′)
17: end if
18: Θ1 = min{Θ1,Θ𝑉 ′}
19: end for
20: Return Θ1

Description of DUAL. Algorithm 1 shows the pseudo code of

DUAL. Except a graph 𝐺 (𝑉 , 𝐸, 𝑐), a set of vertex groups Γ, a prob-
ability function 𝑝 and a threshold value 𝑏, DUAL also inputs a

parameter 𝜏 ∈ R such that 𝜏 ≥ 1. DUAL incorporates a state-of-the-
art classical group Steiner tree algorithm: PrunedDP++ [25]. With

the input of a graph, a set of vertex groups, and the parameter 𝜏 ≥ 1,

PrunedDP++ outputs a tree such that (i) this tree contains at least

one vertex in each group; and (ii) the total edge weight in this tree

is no more than 𝜏 times the total edge weight in a minimum-weight

tree that contains at least one vertex in each group (specifically, we

let PrunedDP++ output the first found tree such that the reported

approximation ratio of this tree for the classical group Steiner tree

problem is no larger than 𝜏 ). We can also replace PrunedDP++ with

some other classical group Steiner tree algorithms, as discussed in

the supplement [6].

The algorithm first initializes an empty tree Θ1, and considers

the weight of this tree as infinity (Line 1). Then, for every 𝑔 ∈ Γ, it
finds the set of all essential covers of 𝑔: Φ𝑔 (Line 2). Subsequently,
it finds Φ𝑔𝑥 such that |Φ𝑔𝑥 | is the minimum, and enumerates and

processes every essential cover 𝑉 ′
in Φ𝑔𝑥 as follows (Lines 3-19).

It builds a feasible solution tree Θ𝑉 ′ as follows. If |Γ | = 1 (Line 4),

then it uses a classical group Steiner tree algorithm, PrunedDP++
[25], to approximately find a minimum-weight tree that spans 𝑉 ′

as Θ𝑉 ′ , with an approximation guarantee of 𝜏 (Line 5). Specifically,

with the input of 𝐺 , 𝑉 ′
and 𝜏 , PrunedDP++ treats each vertex in

𝑉 ′
as a singular vertex group in the classical group Steiner tree

problem, and outputs a tree Θ𝑉 ′ such that (i) Θ𝑉 ′ spans 𝑉 ′
; and (ii)

the total edge weight in Θ𝑉 ′ is no more than 𝜏 times the total edge

weight in a minimum-weight tree that spans 𝑉 ′
.

If |Γ | > 1, then it builds Θ𝑉 ′ as follows (Lines 7-16). First, it

initializes an empty graph𝐺 ′ = ∅ (Line 7). For each group𝑔 ∈ Γ\𝑔𝑥 ,
it conducts the following steps (Lines 9-14). It initializes an empty

tree Θ𝑆𝑇 (𝑉 ′,Φ𝑔), and considers the weight of this tree as infinity

(Line 9). For each essential cover of 𝑔: 𝑉𝑗 ∈ Φ𝑔 (Line 10), it employs

PrunedDP++ to approximately find a minimum-weight tree that

spans 𝑉 ′ ∪ 𝑉𝑗 as Θ(𝑉 ′,𝑉𝑗 ), with an approximation guarantee of

𝜏 (Line 11), i.e., with the input of 𝐺 , 𝑉 ′ ∪ 𝑉𝑗 and 𝜏 , PrunedDP++
treats each vertex in 𝑉 ′ ∪ 𝑉𝑗 as a singular vertex group in the

classical group Steiner tree problem, and outputs a tree Θ(𝑉 ′,𝑉𝑗 )
such that (i) Θ(𝑉 ′,𝑉𝑗 ) spans 𝑉 ′ ∪𝑉𝑗 ; and (ii) the total edge weight

in Θ(𝑉 ′,𝑉𝑗 ) is no more than 𝜏 times the total edge weight in a

minimum-weight tree that spans𝑉 ′∪𝑉𝑗 . If the weight ofΘ(𝑉 ′,𝑉𝑗 )
is smaller than that of Θ𝑆𝑇 (𝑉 ′,Φ𝑔), it updates Θ𝑆𝑇 (𝑉 ′,Φ𝑔) to be

Θ(𝑉 ′,𝑉𝑗 ) (Line 12). After enumerating every essential cover of 𝑔,

it merges Θ𝑆𝑇 (𝑉 ′,Φ𝑔) into 𝐺 ′
(Line 14). Then, DUAL finds Θ𝑉 ′ as

a Minimum Spanning Tree (MST) that spans 𝐺 ′
(Line 16).

The built Θ𝑉 ′ is a feasible solution tree. If the weight of Θ𝑉 ′ is

smaller than that of Θ1, then it updates Θ1 to Θ𝑉 ′ (Line 18). After

processing every essential cover in Φ𝑔𝑥 , DUAL returns Θ1 (Line 20).

The novelty ofDUAL lies in the fact that it introduces the original
concept of "essential covers", and based on the fresh observation

that an optimal solution to Problem 1 is a minimum-weight tree

that contains at least one essential cover of each group, it achieves

the following approximation guarantee by iteratively merging trees

that contain essential covers of two groups.

Approximation guarantee of DUAL. We prove the approxima-

tion guarantee of DUAL as follows.

Theorem 1. DUAL has a sharp approximation guarantee of

𝜏 ·max{1, |Γ | − 1}
for solving the probabilistic group Steiner tree problem.

Proof. Suppose that Θ𝑜𝑝𝑡 is an optimal solution. Θ𝑜𝑝𝑡 contains

at least one essential cover of 𝑔𝑥 . Suppose that Θ𝑜𝑝𝑡 contains 𝑉
′ ∈

Φ𝑔𝑥 . When |Γ | = 1, DUAL approximately find a minimum-weight

tree that spans 𝑉 ′
, with an approximation guarantee of 𝜏 , in Line

5. Thus, DUAL has an approximation guarantee of 𝜏 when |Γ | = 1.

We prove that DUAL has a guarantee of 𝜏 · ( |Γ | − 1) when |Γ | > 1

as follows. Let Θ′
be a minimum-weight tree that contains 𝑉 ′

and

satisfactorily covers a vertex group 𝑔 ∈ Γ \ 𝑔𝑥 . We have

𝑐 (Θ′) ≤ 𝑐 (Θ𝑜𝑝𝑡 ) . (3)

Suppose that Θ′
contains an essential cover of 𝑔: 𝑉𝑗 ∈ Φ𝑔 . Then,

𝑐 (Θ(𝑉 ′,𝑉𝑗 )) ≤ 𝜏 · 𝑐 (Θ′) ≤ 𝜏 · 𝑐 (Θ𝑜𝑝𝑡 ), (4)

where Θ(𝑉 ′,𝑉𝑗 ) is in Line 11 of DUAL. Line 12 guarantees that

𝑐 (Θ𝑆𝑇 (𝑉 ′,Φ𝑔)) ≤ 𝑐 (Θ(𝑉 ′,𝑉𝑗 )) ≤ 𝜏 · 𝑐 (Θ𝑜𝑝𝑡 ) . (5)

Therefore, Lines 16 and 18 further guarantees that

𝑐 (Θ1) ≤ 𝑐 (Θ𝑉 ′) ≤ 𝑐 (𝐺 ′) ≤
∑

𝑔∈Γ\𝑔𝑥
𝑐 (Θ𝑆𝑇 (𝑉 ′,Φ𝑔))

≤ 𝜏 · ( |Γ | − 1) · 𝑐 (Θ𝑜𝑝𝑡 ).
(6)

Thus, DUAL has an approximation guarantee of 𝜏 · ( |Γ | − 1) when
|Γ | > 1. We prove the sharpness of 𝜏 ·max{1, |Γ | − 1} as follows.

First, we prove that 𝜏 is sharp when |Γ | = 1. Consider Figure

2a, where 𝜏 is a natural number larger than 1, Γ = {𝑔1}, and 𝑔1 =



{𝑣𝑔1,0, 𝑣𝑔1,1, · · · , 𝑣𝑔1,𝜏 }. There is an edge between 𝑣𝑔1,0 and each of

the other vertices, with the weight of 1. Moreover, there is an edge

between each pair of vertices in 𝑣𝑔1,1, · · · , 𝑣𝑔1,𝜏 , with the weight of

𝛿 , which is a tiny positive value. Suppose that 𝑔1 is an essential

cover of itself. DUAL employs PrunedDP++ to connect 𝑉 ′ = 𝑔1
in Line 5. PrunedDP++ initializes 𝑣𝑔1,0 as a tree rooted at itself.

When PrunedDP++ processes this tree in its dynamic programming

process (details in [25]), it builds a feasible solution by merging

shortest paths between 𝑣𝑔1,0 and each of the other vertices. The

weight of this feasible solution is 𝜏 . Meanwhile, it computes the one-

label lower bound in [25] as the weight of the shortest path between

𝑣𝑔1,0 and any other vertex, which is 1. It computes a progressive

approximation ratio by dividing the weight of the above feasible

solution by the weight of the above lower bound. Since this ratio

is 𝜏 , PrunedDP++ returns the above feasible solution as Θ1. The

optimal solution Θ𝑜𝑝𝑡 contains 1 edge with the weight of 1 and

𝜏 − 1 edges with the weight of 𝛿 . The approximation ratio of DUAL
for the above instance is

lim

𝛿→0

𝑐 (Θ1)
𝑐 (Θ𝑜𝑝𝑡 )

=
𝜏

1 + 𝛿 (𝜏 − 1) = 𝜏 . (7)

Thus, 𝜏 is a sharp approximation guarantee of DUAL when |Γ | = 1.

Then, we prove that 𝜏 · ( |Γ | − 1) is sharp when |Γ | > 1 as follows.

Consider Figure 2b, where 𝜏 is a natural number larger than 1,

Γ = {𝑔1, · · · , 𝑔 |Γ |}, 𝑔1 = {𝑣𝑔1 }, 𝑔𝑖 = {𝑣𝑔𝑖 ,1, · · · , 𝑣𝑔𝑖 ,𝜏 } for 𝑖 ∈ [2, |Γ |].
There is an edge between 𝑣𝑔1 and each of the other vertices, with

the weight of 1. Moreover, there is an edge between each pair of

vertices except 𝑣𝑔1 , with the weight of 𝛿 . Suppose that 𝑔𝑖 is an

essential cover of itself for 𝑖 ∈ [1, |Γ |], and 𝑔𝑥 = 𝑔1 in Line 2. Thus,

𝑉 ′ = {𝑣𝑔1 } in Line 3. Consider 𝑉𝑗 = 𝑔𝑖 for 𝑖 ∈ [2, |Γ |] in Line 10.

DUAL employs PrunedDP++ to connect 𝑉 ′ ∪𝑉𝑗 in Line 11. Similar

to the above process of PrunedDP++ when |Γ | = 1, PrunedDP++
returns the set of edges between 𝑣𝑔1 and each of the vertices in 𝑉𝑗
as Θ(𝑉 ′,𝑉𝑗 ) in Line 11. As a result, DUAL returns the set of edges

between 𝑣𝑔1 and each of all the other vertices as Θ1. Θ𝑜𝑝𝑡 contains

1 edge with the weight of 1 and 𝜏 · ( |Γ | − 1) − 1 edges with the

weight of 𝛿 . The approximation ratio of DUAL is

lim

𝛿→0

𝑐 (Θ1)
𝑐 (Θ𝑜𝑝𝑡 )

=
𝜏 · ( |Γ | − 1)

1 + 𝛿 · (𝜏 · ( |Γ | − 1) − 1) = 𝜏 · ( |Γ | − 1) . (8)

Thus, 𝜏 · ( |Γ | − 1) is sharp when |Γ | > 1. This theorem holds. □

Time complexity of DUAL. DUAL has a time complexity of

𝑂

(
|Γ |𝜉2 |𝑉 |2𝜉 ·

(
3
2𝜉 |𝑉 | + 2

2𝜉 |𝑉 | · (2𝜉 |𝑉 | + |𝐸 | + |𝑉 | log |𝑉 |)
))
,

where 𝜉 is the smallest natural number that is larger than or equal

to log(1−𝑝𝑚𝑖𝑛) (1 − 𝑏), and 𝑝𝑚𝑖𝑛 is the minimum value of 𝑝𝑔 (𝑣) for
every 𝑣 ∈ 𝑔 ∈ Γ. The details are in the supplement [6].

3.2 The GRE-TREE algorithm
The above DUAL has a low efficiency, as it enumerates and com-

putes every essential cover of every group (e.g., Lines 3 and 10 in

DUAL). To achieve a higher efficiency, here, we develop the greedy

tree concatenating algorithm, dubbed GRE-TREE. “Greedy tree con-
catenating” refers to the fact thatGRE-TREE greedily and iteratively
concatenates trees to cover groups that have not been satisfactorily

(a) |Γ | = 1 (b) |Γ | > 1

Figure 2: The sharpness of 𝜏 ·max{1, |Γ | − 1}.

covered yet. Different from DUAL, GRE-TREE does not enumerate

essential covers, and has a higher efficiency.

Core idea of GRE-TREE.We describe the core idea of GRE-TREE
as follows. Consider a vertex group 𝑔 ∈ Γ. An optimal solution tree

contains at least one vertex in 𝑔. Suppose that an optimal solution

tree roots at vertex 𝑣 ∈ 𝑔. We can construct a feasible solution tree

via the following two steps. First, we initialize a solution tree to

be {𝑣}. Second, we iteratively merge a tree into this solution tree

such that the merged tree is a minimum-weight tree that contains

𝑣 and at least one not-merged-yet vertex in each not-satisfactorily-

covered-yet vertex group, until this solution tree becomes feasible,

i.e., until it satisfactorily covers every vertex group. Since

1 − (1 − 𝑝𝑚𝑖𝑛)𝜉 ≥ 1 − (1 − 𝑝𝑚𝑖𝑛)log(1−𝑝𝑚𝑖𝑛 ) (1−𝑏) ≥ 𝑏, (9)

for each vertex group 𝑔 ∈ Γ, any set of vertices that contains no

fewer than 𝜉 vertices in 𝑔 can satisfactorily cover 𝑔. As a result, at

most 𝜉 trees are merged in the above second step. Suppose that

the trees that are merged in the above second step are iteratively

Θ1,Θ2, . . . ,Θ𝑥 , and the optimal solution that roots at 𝑣 is Θ𝑜𝑝𝑡 . For

each vertex group 𝑔 that is not satisfactorily covered by Θ1 ∪ · · · ∪
Θ𝑥−1, Θ𝑜𝑝𝑡 must contain at least one vertex that is in 𝑔 but not in

Θ1∪· · ·∪Θ𝑥−1, as otherwiseΘ𝑜𝑝𝑡 cannot satisfactorily cover 𝑔. On

the other hand, Θ𝑥 is a minimum-weight tree that contains 𝑣 and

at least one vertex that is in 𝑔 but not in Θ1 ∪ · · · ∪Θ𝑥−1, for every
vertex group 𝑔 that is not satisfactorily covered by Θ1 ∪ · · · ∪Θ𝑥−1.
Thus,

𝑐 (Θ𝑥 ) ≤ 𝑐 (Θ𝑜𝑝𝑡 ), (10)

i.e., the weight of any merged tree is not larger than the weight

of an optimal solution tree. Since at most 𝜉 trees are merged, the

weight of the constructed feasible solution tree is not larger than 𝜉

times the weight of an optimal solution tree. This is the core idea

of GRE-TREE for approximating probabilistic group Steiner trees.

Description of GRE-TREE. Algorithm 2 shows the pseudo code of

GRE-TREE. It has the same inputs withDUAL. It initializes an empty

treeΘ2 = ∅, and considers the weight of this tree as infinite (Line 1).
Then, it finds the smallest group 𝑔𝑚𝑖𝑛 in Γ (Line 2), and processes

each vertex 𝑣 ∈ 𝑔𝑚𝑖𝑛 as follows (Lines 3-12). First, it initializes a

graph 𝐺 ′ = {𝑣} (Line 4). While 𝐺 ′
does not satisfactorily cover all

groups, it initializes a set of vertex groups Γ′ such that (i) Γ′ contains
a single-element vertex group {𝑣}; and (ii) for each group 𝑔 ∈ Γ that

has not been satisfactorily covered by 𝐺 ′
, Γ′ also contains a vertex

group that is the set of vertices that are in 𝑔 but not in 𝐺 ′
(Line 6).

For example, if 𝑔 = {𝑣1, 𝑣2, 𝑣3} has not been satisfactorily covered

by𝐺 ′
yet, and𝐺 ′

contains 𝑣1, but not 𝑣2 or 𝑣3, then Γ′ contains the
vertex group {𝑣2, 𝑣3}. GRE-TREE employs PrunedDP++ to produce

a solution tree to the classical group Steiner tree problem in 𝐺 for

Γ′, with an approximation guarantee of 𝜏 (Line 7; we can also

replace PrunedDP++ with some other classical group Steiner tree

algorithms, as discussed in the supplement [6]). In particular, with



Algorithm 2 The GRE-TREE algorithm

Input: a graph 𝐺 (𝑉 , 𝐸, 𝑐), a set of vertex groups Γ, a probability
function 𝑝 , a threshold value 𝑏, and a parameter 𝜏 ∈ R that 𝜏 ≥ 1

Output: an approximate solution tree Θ2

1: Initialize an empty tree Θ2 = ∅, and 𝑐 (Θ2) = ∞
2: Find the smallest vertex group 𝑔𝑚𝑖𝑛 in Γ
3: for each vertex 𝑣 ∈ 𝑔𝑚𝑖𝑛 do
4: Initialize a graph 𝐺 ′ = {𝑣}
5: while𝐺 ′

does not satisfactorily cover all vertex groups do
6: Initialize a set of vertex groups Γ′ that contains (i) a

single-element vertex group {𝑣}; and (ii) for each 𝑔 ∈ Γ
that is not satisfactorily covered by 𝐺 ′

, a vertex group

that is the set of vertices that are in 𝑔 but not in 𝐺 ′

7: Θ′ = 𝑃𝑟𝑢𝑛𝑒𝑑𝐷𝑃 + +(𝐺, Γ′, 𝜏)
8: 𝐺 ′ = 𝐺 ′ ∪ Θ′

9: end while
10: Θ𝑣 = 𝑀𝑆𝑇 (𝐺 ′)
11: Θ2 = min{Θ2,Θ𝑣}
12: end for
13: Return Θ2

the input of𝐺 , Γ′ and 𝜏 , PrunedDP++ outputs a tree Θ′
such that (i)

Θ′
contains at least one vertex in each group in Γ′; and (ii) the total

edge weight in Θ′
is no more than 𝜏 times the total edge weight in

a minimum-weight tree that contains at least one vertex in each

group in Γ′. Notably, Θ′
contains 𝑣 and, for each group 𝑔 that is

not satisfactorily covered by 𝐺 ′
, also contains at least one vertex

that is in 𝑔 but not in 𝐺 ′
. Then, it merges Θ′

into 𝐺 ′
(Line 8). After

the above process, it produces Θ𝑣 as an MST of 𝐺 ′
(Line 10), and

uses Θ𝑣 to update Θ2 (Line 11). After enumerating every 𝑣 ∈ 𝑔𝑚𝑖𝑛 ,

it returns Θ2 (Line 13).

The novelty of GRE-TREE is that, based on the original observa-

tion that no more than 𝜉 vertices in a group are needed for covering

this group satisfactorily, it achieves the following approximation

guarantee by iteratively merging trees that contain at least one not-

merged-yet vertex in each not-satisfactorily-covered-yet group.

Approximation guarantee of GRE-TREE. We prove the approxi-

mation guarantee of GRE-TREE as follows.

Theorem 2. GRE-TREE has a sharp approximation guarantee of

𝜏 · 𝜉

for solving the probabilistic group Steiner tree problem.

Proof. LetΘ𝑜𝑝𝑡 be an optimal solution. Suppose thatΘ𝑜𝑝𝑡 roots

at 𝑣 ∈ 𝑔𝑚𝑖𝑛 . Let Θ𝑣 be the feasible solution produced by GRE-TREE
in the loop for 𝑣 (Lines 3-12). Line 11 guarantees that

𝑐 (Θ2) ≤ 𝑐 (Θ𝑣) . (11)

Suppose that trees that are merged into 𝐺 ′
in Line 8 are iteratively

Θ′
1
,Θ′

2
, . . . ,Θ′

𝑥 , and Θ′
0
= {𝑣}, i.e, Θ′

0
is the initialized 𝐺 ′

in Line 4.

For each 𝑖 ∈ [1, 𝑥] and each group 𝑔 ∈ Γ that is not satisfactorily

covered by Θ′
0
∪ · · · ∪ Θ′

𝑖−1, Θ𝑜𝑝𝑡 must contains 𝑣 and at least one

vertex in 𝑔 but not in Θ′
0
∪ · · · ∪ Θ′

𝑖−1, as otherwise Θ𝑜𝑝𝑡 cannot

satisfactorily covers 𝑔. Since Θ′
𝑖
is a 𝜏-approximation minimum-

weight tree that contains 𝑣 and at least one vertex in 𝑔 but not in

Θ′
0
∪ · · · ∪ Θ′

𝑖−1, we have

𝑐 (Θ′
𝑖 ) ≤ 𝜏 · 𝑐 (Θ𝑜𝑝𝑡 ) . (12)

As discussed in the core idea of GRE-TREE, we have 𝑥 ≤ 𝜉 . Thus,

𝑐 (Θ2) ≤ 𝑐 (Θ𝑣) ≤ 𝑐 (𝐺 ′) ≤
∑

𝑖∈[1,𝑥 ]
𝑐 (Θ′

𝑖 ) ≤ 𝜏 · 𝜉 · 𝑐 (Θ𝑜𝑝𝑡 ) . (13)

Thus, 𝜏 · 𝜉 is an approximation guarantee of GRE-TREE. We prove

the sharpness of this guarantee as follows. Consider an instance

similar to that in Figure 2b: Γ = {𝑔1, · · · , 𝑔 |Γ |}, 𝑔1 = {𝑣𝑔1 }, 𝑔𝑖 =

{𝑣𝑔𝑖 ,1, · · · , 𝑣𝑔𝑖 ,𝜉 } for 𝑖 ∈ [2, |Γ |]. There is an edge between 𝑣𝑔1 and

each of the other vertices, with the weight of 1. Moreover, there is

an edge between each pair of vertices except 𝑣𝑔1 , with the weight

of 𝛿 . Suppose that 𝑔𝑖 is an essential cover of itself for 𝑖 ∈ [1, |Γ |].
𝑔𝑚𝑖𝑛 = 𝑔1 in Line 3. Also suppose that 𝜏 = |Γ |−1. The first produced
Θ′

in Line 7 is a 𝜏-approximation solution of PrunedDP++ for

covering 𝑣0 and at least one vertex in 𝑔𝑖 for 𝑖 ∈ [2, |Γ |]. Like the
discussion in the proof of Theorem 1, Θ′

in Line 7 contains an edge

between 𝑣𝑔1 and a vertex in {𝑣𝑔𝑖 ,1, · · · , 𝑣𝑔𝑖 ,𝜉 } for each 𝑖 ∈ [2, |Γ |].
After iteratively concatenating such trees, GRE-TREE returns Θ2

that contains 𝜏 · 𝜉 edges with the weight of 1. The optimal solution

Θ𝑜𝑝𝑡 contains 1 edge with the weight of 1 and 𝜏 · 𝜉 − 1 edges with

the weight of 𝛿 . The approximation ratio of GRE-TREE is

lim

𝛿→0

𝑐 (Θ2)
𝑐 (Θ𝑜𝑝𝑡 )

=
𝜏 · 𝜉

1 + 𝛿 · (𝜏 · 𝜉 − 1) = 𝜏 · 𝜉 . (14)

Thus, 𝜏 · 𝜉 is a sharp guarantee. This theorem holds. □

Time complexity of GRE-TREE:

𝑂

(
𝜉 · |𝑔𝑚𝑖𝑛 | ·

(
3
|Γ | |𝑉 | + 2

|Γ | |𝑉 | · ( |Γ | |𝑉 | + |𝐸 | + |𝑉 | log |𝑉 |)
))
.

The details are in the supplement [6].

3.3 The GRE-PATH algorithm
The aboveGRE-TREE utilizes PrunedDP++𝑂 (𝜉 · |𝑔𝑚𝑖𝑛 |) times. Since

PrunedDP++ has an exponential time complexity with respect to

|Γ |, GRE-TREE does not scale well to |Γ | or |𝑔𝑚𝑖𝑛 |. To address this

issue, here, we develop the greedy path concatenating algorithm,

dubbed GRE-PATH. “Greedy path concatenating” refers to the fact

thatGRE-PATH greedily and iteratively concatenates paths to cover

groups that have not been satisfactorily covered yet. Different from

GRE-TREE, GRE-PATH does not utilize PrunedDP++ in its process.

Core idea of GRE-PATH. We describe the core idea of GRE-PATH
as follows. First, let 𝜉𝑔 be the smallest natural number that is larger

than or equal to log(1−𝑝𝑔!𝑚𝑖𝑛) (1−𝑏), where 𝑝𝑔!𝑚𝑖𝑛 is the minimum

value of 𝑝𝑔 (𝑣) for every 𝑣 ∈ 𝑔. Suppose that there is an optimal

solution tree Θ𝑜𝑝𝑡 that roots at vertex 𝑣 . We can build a tree that

roots at 𝑣 and satisfactorily covers a group 𝑔𝑥 ∈ Γ in the follow-

ing way. First, we initialize an empty tree. Second, we iteratively

merge shortest paths between 𝑣 and vertices in 𝑔𝑥 into this tree, in

the increasing order of the weights of these paths, until this tree

satisfactorily covers 𝑔𝑥 . Since any set of vertices that contains 𝜉𝑔𝑥
vertices in 𝑔𝑥 can satisfactorily covers 𝑔𝑥 , we merge at most 𝜉𝑔𝑥
paths in the above process. Suppose that 𝑃1, · · · , 𝑃𝑦 are the merged

paths sequentially, and𝑉𝑃1 , · · · ,𝑉𝑃𝑦 are the sets of vertices in these

paths. Since 𝑉𝑃1 ∪ · · · ∪𝑉𝑃𝑦−1 does not satisfactorily cover 𝑔𝑥 , an

optimal solution tree that roots at 𝑣 must contain at least one vertex



Algorithm 3 The GRE-PATH algorithm

Input: a graph 𝐺 (𝑉 , 𝐸, 𝑐), a set of vertex groups Γ, a probability
function 𝑝 , a threshold value 𝑏, and hub labels for all pairs of

shortest paths in 𝐺

Output: an approximate solution tree Θ3

1: Initialize a tree Θ3 = ∅, and 𝑐 (Θ3) = ∞
2: Find the smallest group 𝑔𝑚𝑖𝑛 in Γ
3: for each vertex 𝑣 ∈ 𝑔𝑚𝑖𝑛 do
4: for each group 𝑔 ∈ Γ do
5: Initialize a min Binary heap [41] 𝑄𝑔 that contains

each vertex 𝑢 ∈ 𝑔, with the weight of 𝑃 (𝑣,𝑢) as
the priority value

6: end for
7: Initialize a tree Θ𝑣 = {𝑣}
8: for each group 𝑔 ∈ Γ do
9: while 𝑝𝑔 (Θ𝑣) < 𝑏 do
10: Pop 𝑢 out of 𝑄𝑔

11: Θ𝑣 = Θ𝑣 ∪ 𝑃 (𝑣,𝑢)
12: end while
13: end for
14: Θ3 = min{Θ3,Θ𝑣}
15: end for
16: Return Θ3 = 𝑀𝑆𝑇 (Θ3)

in 𝑔𝑥 but not in 𝑉𝑃1 ∪ · · · ∪ 𝑉𝑃𝑦−1 . Since we merge paths in the

increasing order of the weights of paths, 𝑃𝑦 is the shortest path

between 𝑣 and vertices in 𝑔𝑥 but not in𝑉𝑃1 ∪ · · ·∪𝑉𝑃𝑦−1 . As a result,

𝑐 (𝑃𝑦) ≤ 𝑐 (Θ𝑜𝑝𝑡 ), (15)

which means that the weight of each merged path is not larger

than the weight of an optimal solution tree. We can build a tree

that satisfactorily covers all groups by merging shortest paths in a

similar way. The number of merged paths is bounded by

∑
𝑔∈Γ 𝜉𝑔 ,

and the weight of each merged path is not larger than the weight

of an optimal solution tree. This is the core idea of GRE-PATH for

approximating probabilistic group Steiner trees.

Description of GRE-PATH. Algorithm 3 shows the pseudo code of

GRE-PATH. Different from DUAL and GRE-TREE, GRE-PATH does

not input the parameter 𝜏 , since it does not utilize PrunedDP++.
Another difference is that GRE-PATH inputs hub labels (e.g., [7, 12,
26–28]) of shortest paths between all pairs of vertices in the input

graph 𝐺 . By using these labels, we can extract the shortest path

between each pair of vertices in 𝐺 within microseconds. Here, we

use a parallel version of the Pruned Landmark Labeling algorithm

[7] to prepare these labels, since this parallel version is simple and

scales well to large edge-weighted graphs with millions of vertices

and edges, and it is also fast to use labels generated by this parallel

version to query shortest paths. We can also use the reduction

techniques in [26] and the tree decomposition techniques in [27]

to generate labels with more complex structures and smaller sizes

to record shortest paths. However, since it is often less efficient to

query shortest paths using these more complex labels [26, 27], we

do not use these more complex labels in this paper.

GRE-PATH initializes an empty tree Θ3 = ∅, and considers the

weight of this tree as infinite (Line 1). It finds the smallest group

𝑔𝑚𝑖𝑛 in Γ (Line 2), and processes each vertex 𝑣 ∈ 𝑔𝑚𝑖𝑛 as follows

(Lines 3-18). For each 𝑔 ∈ Γ (Line 4), it initializes a min Binary

heap [41] 𝑄𝑔 that contains each vertex 𝑢 ∈ 𝑔, with the weight of

𝑃 (𝑣,𝑢) as the priority value (Line 5). Subsequently, it initializes a

tree Θ𝑣 = {𝑣} (Line 7). For each group 𝑔 ∈ Γ (Line 8), while Θ𝑣

does not satisfactorily cover 𝑔 i.e., 𝑝𝑔 (Θ𝑣) < 𝑏 (Line 9), it pops

out the top element 𝑢 of 𝑄𝑔 (Line 10), and merges the shortest

path between 𝑣 and 𝑢: 𝑃 (𝑣,𝑢) into Θ𝑣 (Line 11). After the merging

process, Θ𝑣 becomes a feasible solution tree. If the weight of Θ𝑣 is

smaller than that of Θ3, then GRE-PATH updates Θ3 to Θ𝑣 (Line 14).

After enumerating every 𝑣 ∈ 𝑔𝑚𝑖𝑛 , GRE-PATH updates and returns

Θ3 as an MST that spans the vertices in Θ3 (Line 16).

Notably, both GRE-PATH and GRE-TREE iteratively merge sub-

graphs that contain not-merged-yet vertices in not-satisfactorily-

covered-yet groups. The differences between these two algorithms

are as follows. GRE-TREE merges 𝑂 (𝜉) trees, and thus has an ap-

proximation guarantee proportional to 𝜉 , at the cost of an expo-

nential time complexity with respect to |Γ |, due to the usage of

PrunedDP++ for finding the merged trees. In comparison, GRE-
PATH does not utilizes PrunedDP++ to find and merge trees, but

merges 𝑂 (∑𝑔∈Γ 𝜉𝑔) paths, and thus achieves a looser approxima-

tion guarantee than GRE-TREE, while enjoying a polynomial time

complexity, which will be analyzed later. Moreover, different from

GRE-TREE that finds the merged tree just before a merge operation,

a novelty ofGRE-PATH is that it uses hub labeling techniques to pre-

compute all candidate paths that may be merged before the merge

operations, for achieving a much higher efficiency than GRE-TREE.
Approximation guarantee of GRE-PATH. We show the approxi-

mation guarantee of GRE-PATH as follows, the proof of which is in

the supplement [6].

Theorem 3. GRE-PATH has a sharp approximation guarantee of

max{1,
∑
𝑔∈Γ

𝜉𝑔 − 1}

for solving the probabilistic group Steiner tree problem.

Time complexity of GRE-PATH:

𝑂

(
|𝑔𝑚𝑖𝑛 | ·

∑
𝑔∈Γ

𝜉𝑔 · 𝐿 |𝑉 | + |𝐸 | + |𝑉 | log |𝑉 |
)
,

where 𝐿 is the average number of hub labels associated with each

vertex (details in [7, 12, 28]). The details are in the supplement [6].

4 EXPERIMENTS
In this section, we conduct experiments on a computer with two

Intel Xeon Gold 6342 processors and 500 GB RAM
1
.

4.1 Datasets
We use three types of real datasets as follows.

Amazon. It is the Amazon product dataset in the Stanford Network

Analysis Project [5]. We use it to build a graph, where each vertex

represents a product, and each edge between two vertices indicates

that there are users who bought these two products at the same time.

Each product is associated with the average rating of this product

and a set of keywords that describe this product. There are 548,552

1Our codes and datasets are at https://github.com/rucdatascience/PGST

https://github.com/rucdatascience/PGST


Table 1: Dataset statistics.

Name Vertices Edges Vertex Groups

Amazon 548,552 987,942 25,958

DBLP 2,497,782 15,759,646 132,337

Movie 62,423 35,323,774 19

vertices, 987,942 edges, and 25,958 keywords in total. For a user

who queries |Γ | keywords, we consider each group in Γ as the set of

vertices associated with a specific queried keyword. We normalize

the average ratings of products to the range of [𝑃𝑚𝑖𝑛, 𝑃𝑚𝑎𝑥 ], where
𝑃𝑚𝑖𝑛 and 𝑃𝑚𝑎𝑥 are parameters, and 0 < 𝑃𝑚𝑖𝑛 < 𝑃𝑚𝑎𝑥 ≤ 1. For

group 𝑔 ∈ Γ and vertex 𝑣 ∈ 𝑔, we set 𝑝𝑔 (𝑣) as the normalized

average rating of 𝑣 , which represents the probability that 𝑣 satisfies

the user. In this case, a product has the same probability values

of satisfying the user for the associated keywords, e.g., for vertex
𝑣 and groups 𝑔𝑖 and 𝑔 𝑗 , we have 𝑝𝑔𝑖 (𝑣) = 𝑝𝑔𝑗 (𝑣). This reflects the
fact that a product often either satisfies or does not satisfy the user

as an integrated entity.

DBLP. It is the DBLP citation dataset at the AMiner website [2]. We

use it to build a graph, where each vertex represents a paper. There

is an edge between two vertices if there is a citation relationship

between the two papers, which indicates that the contents of the

two papers are related to each other, e.g., the fact that paper 𝑣 cites
paper𝑢 not only shows that the contents of𝑢 are related to 𝑣 , which

is why 𝑣 cites 𝑢, but also shows that the contents of 𝑣 are related to

𝑢, since 𝑣 is a work built on 𝑢. Each paper is associated with some

fields of study, and each paper-field pair is further associated with

a value, e.g., 0.659, that indicates the probability that this paper is

in this field. The developers of the AMiner website produce such

values by analyzing the contents of papers using natural language

processing techniques [38]. There are 2,497,782 vertices, 15,759,646

edges, and 132,337 fields in total. For a user who queries |Γ | fields,
we consider each group in Γ as the set of vertices that are associated

with a specific queried field. Like Amazon, we normalize the values

of paper-field pairs to the range of [𝑃𝑚𝑖𝑛, 𝑃𝑚𝑎𝑥 ]. For group 𝑔 ∈ Γ
and vertex 𝑣 ∈ 𝑔, we set 𝑝𝑔 (𝑣) as the normalized value of the pair

of 𝑣 and 𝑔, which represents the probability that 𝑣 is in field 𝑔.

Movie. It is the MovieLens dataset at the GroupLens website [3].

We use it to build a graph, where each vertex represents a movie.

Each movie is associated with the average rating of this movie and

the genres that this movie belongs to, e.g., comedy. There is an edge

between two vertices if there are users who give both movies 5 stars,

which indicates that people who like one of these two movies may

also like the other one. There are 62,423 vertices, 35,323,774 edges,

and 19 genres in total. For a user who queries |Γ | genres, we consider
each group in Γ as the set of vertices that are associated with a

specific queried genre. Like Amazon, we normalize the average

ratings of movies to the range of [𝑃𝑚𝑖𝑛, 𝑃𝑚𝑎𝑥 ]. For group 𝑔 ∈ Γ
and vertex 𝑣 ∈ 𝑔, we set 𝑝𝑔 (𝑣) as the normalized average rating of

𝑣 , which represents the probability that 𝑣 satisfies the user.

4.2 Experiment settings
Baseline algorithms. Except the proposed algorithms, we apply

four state-of-the-art group Steiner tree algorithms as baselines.

• DPBF [13]: a dynamic programming algorithm that solves the

classical group Steiner tree problem to optimality. It is widely

used for information retrieval in databases (e.g., [18, 22, 23]).

Figure 3: The sizes of candidate vertex groups.

• ENSteiner [21]: a heuristic algorithm that finds sub-optimal so-

lutions to the classical group Steiner tree problem via a transfor-

mation from group Steiner trees to Steiner trees [15]. It is widely

used for team formation in social networks (e.g., [21, 32, 40]).
• PrunedDP++ [25]: a progressive algorithm that finds optimal or

approximate solutions to the classical group Steiner tree prob-

lem through a dynamic programming approach. It improves

DPBF on both practical efficiency and solution flexibility.

• ImprovAPP [37]: a (|Γ |−1)-approximation algorithm that solves

the classical group Steiner tree problem by greedily and itera-

tively merging shortest paths between vertices. It improves a

previous (|Γ | − 1)-approximation algorithm [20] on both effi-

ciency and practical solution quality.

Each of the above algorithms originally returns a classical group

Steiner tree that contains at least one vertex in each group. We use

each of these algorithms to iteratively compute 𝑘 ∈ Z+ classical

group Steiner trees in the following way: after computing each

tree, we update the weights of edges in this tree to be large values,

for preferably computing different trees in next iterations. Such

computed trees may not satisfactorily cover all groups. To address

this issue, for each computed tree, we iteratively merge shortest

paths between this tree and nearby vertices in groups that have not

been satisfactorily covered by this tree, until this tree satisfactorily

covers all groups. We use hub labels of shortest paths to accelerate

this process. Then, we replace the merged tree with a minimum

spanning tree that spans the vertices in this tree. Notably, we only

consider original edge weights in the above process of repairing

trees. After that, each of the above algorithms produces 𝑘 feasible

solutions to Problem 1. We let each of these algorithms return the

best found solution, and compare the returned solutions with those

of the proposed algorithms in the following experiments.

Lower bounds.When 𝜏 = 1, the first classical group Steiner tree

computed by PrunedDP++ in the above process is an optimal so-

lution to the classical group Steiner tree problem. The weight of

this tree is a lower bound of the weight of an optimal solution to

Problem 1. We compare this lower bound with the solution weights

of the applied algorithms in the following experiments.

Edge weights. There are two major existing methods of setting

edge weights for finding group Steiner trees. First, set edge weights

to 1 (e.g., [13, 25]). Second, set edge weights to pairwise Jaccard

distances (e.g., [21, 37]), i.e., for edge 𝑒 between vertices 𝑢 and 𝑣 ,

set the weight of 𝑒 as 𝑐 (𝑒) = 1 − |𝑉𝑢∩𝑉𝑣 |
|𝑉𝑢∪𝑉𝑣 | , where 𝑉𝑢 and 𝑉𝑣 are

the sets of vertices adjacent to 𝑢 and 𝑣 , respectively. Due to space

limitation, we set edge weights to 1 in the experiments in this paper,

and set edge weights to pairwise Jaccard distances in the additional

experiments in the supplement [6]. The key observations in the

following experiments are consistent with those in the supplement.



Parameters.We vary six parameters as follows.

• |Γ |: the number of vertex groups. ForAmazon,DBLP andMovie,
each candidate group is the set of vertices associated with a

specific keyword, field of study, and genre, respectively. That

is to say, each candidate group corresponds to a PoI. Based on

the fact that some PoIs often appear together in practice, we

select |Γ | candidate groups in the following way. First, we build

a graph where vertices are PoIs and two vertices are connected

with each other if they appear together at least once, i.e., for
Amazon (resp. DBLP and Movie), two keywords (resp. fields
and genres) are associated with the same product (resp. paper
and movie) at least once. Then, we select a root PoI uniformly

at random, and conduct a breadth first search from the root

PoI to search nearby PoIs in the above graph, with a maximum

search depth of 𝑑 , which is the minimum value such that at

least |Γ | − 1 nearby PoIs are searched. Subsequently, we select

|Γ | − 1 nearby PoIs uniformly at random from the searched

ones. The selected |Γ | PoIs, including the root PoI, are often

related and may appear together in practice, as shown by some

examples in the supplement [6]. We consider the |Γ | groups
corresponding to the selected PoIs as the selected groups. There

may be no feasible solution for some Γ. We regenerate Γ when

such a case occurs. We visualize the sizes of candidate groups

in Figure 3. For Amazon and DBLP, large groups that contain
tens of thousands of vertices have negligibly low densities. As a

result, for Amazon and DBLP in Figure 3, we only visualize the

densities of group sizes smaller than 1.2K, for clearly showing

that most groups contain small numbers of vertices.

• 𝑏: the threshold value (see Problem 1).

• 𝜏 : the parameterized approximation ratio of PrunedDP++, and
𝜏 ≥ 1. Since DUAL and GRE-TREE incorporate PrunedDP++, 𝜏
is also an input parameter of DUAL and GRE-TREE.

• 𝑃𝑚𝑖𝑛 : the minimum positive probability value (see Section 4.1).

• 𝑃𝑚𝑎𝑥 : the maximum positive probability value (see Section 4.1).

• 𝑘 : the number of feasible solutions computed by each baseline

algorithm, as discussed above.

Metrics. We evaluate two metrics as follows.

• 𝑤𝑒𝑖𝑔ℎ𝑡 : the weight of a solution tree, i.e., 𝑐 (Θ) for tree Θ.
• 𝑡𝑖𝑚𝑒: the running time of an algorithm (unit: second).

Due to space limitation, we show the memory consumption of al-

gorithms in the supplement [6]. Recall that, the lower bounds of op-

timal solution weights are calculated in the process of PrunedDP++
when 𝜏 = 1. To clearly distinguish lower bounds with algorithms,

we do not show the running times for calculating lower bounds.

4.3 Quantitative experiment results
Here, we show the experiment results. The default values of param-

eters are: |Γ | = 5, 𝑏 = 0.9, 𝜏 = 1, 𝑃𝑚𝑖𝑛 = 0.5, 𝑃𝑚𝑎𝑥 = 0.9, 𝑘 = 3.

When we vary one parameter, we set the other parameters to de-

fault values. For each set of parameters, we randomly generate 300

instances, and visualize the average metric values.

DUAL is mainly of theoretical interests. We show that DUAL
can only be used in tiny graphs with dozens of vertices in Figure 4a,

where “Tiny Amazon” refers to tiny graphs built using the Amazon
dataset, etc. To build a tiny graph with |𝑉 | vertices, we select |𝑉 |

(a) DUAL can only be used in tiny graphs with dozens of vertices.

(b) GRE-TREE does not scale well for small DBLP andMovie.

(c) Evaluation of solution quality and speed in full graphs.

Figure 4: Experiment results in tiny, small, and full graphs.

vertices and the edges between these vertices from the input data

in the following way. First, we randomly select a vertex 𝑣 . Then,

we perform a random walk starting from 𝑣 , and select the first |𝑉 |
vertices encountered. Since the graph may not be connected, the

random walk starting from 𝑣 may not encounter |𝑉 | vertices. In
this case, we perform multiple random walks, until |𝑉 | vertices
are selected. In Figures 4a, |𝑉 | = 45 for “Tiny Amazon”, |𝑉 | = 90

for “Tiny DBLP”, and |𝑉 | = 70 for “Tiny Movie”. In Figures 4a (1-3),

DUAL finds lower-weight solutions than the baseline algorithms.

By comparing the lower bounds, it can be seen that the solution

weights of DUAL are roughly at most 200% of the optimal solution

weights for Amazon and DBLP, and 300% for Movie. In Figures 4a

(4-6), DUAL is significantly slower than the other algorithms. The

reason is that DUAL frequently exploits PrunedDP++ to connect

two essential covers optimally, and has a large time complexity.

Thus,DUAL can only be used in tiny graphs with dozens of vertices,



(a) Variation of the number of vertex groups: |Γ |.

(b) Variation of the threshold value: 𝑏.

(c) Variation of the approximation parameter: 𝜏 .
Figure 5: Experiment results of varying |Γ |, 𝑏, and 𝜏 .

and is mainly of theoretical interests. As a result, we do not apply
DUAL in the following experiments in larger graphs.
GRE-TREE is useful when group sizes are small. We evaluate

the performance of GRE-TREE in small graphs built using parts

of datasets in Figure 4b, where |𝑉 | = 188, 552 for "Small Amazon",

(a) Variation of the minimum positive probability value: 𝑃𝑚𝑖𝑛 .

(b) Variation of the maximum positive probability value: 𝑃𝑚𝑎𝑥 .

(c) Variation of the number of feasible solutions in baselines: 𝑘 .
Figure 6: Experiment results of varying 𝑃𝑚𝑖𝑛 , 𝑃𝑚𝑎𝑥 and 𝑘 .

|𝑉 | = 897, 782 for "Small DBLP", and |𝑉 | = 2, 423 for "Small Movie".

In Figures 4b (1-3), GRE-TREE produces lower-weight solutions

than the other algorithms. By comparing the lower bounds, it can

be seen that the solution weights of GRE-TREE are roughly at most

200% of the optimal solution weights for Amazon, and 300% for



DBLP and Movie. For Movie in Figure 4b (6), GRE-TREE is more

than two orders of magnitude slower than the other algorithms. In

comparison, for Amazon andDBLP in Figures 4b (4-5),GRE-TREE is
an order of magnitude slower than baselines. The reason why GRE-
TREE is particularly slow forMovie is that the sizes of vertex groups
are large forMovie, which means that the size of the smallest group

|𝑔𝑚𝑖𝑛 | is often large for Movie, as shown in the supplement [6],

while GRE-TREE uses PrunedDP++ 𝑂 (𝜉 · |𝑔𝑚𝑖𝑛 |) times. Given that

GRE-TREE can produce better solutions than the other algorithms,

it may be preferable to use GRE-TREE when group sizes are small

and graph sizes are not extremely large, e.g., for Amazon. It is too
slow to use GRE-TREE in the full DBLP and Movie graphs. As a
result,we useGRE-TREE only in the full Amazon graph, but not in the
fullDBLP andMovie graphs, in the following experiments. Moreover,

it is too slow to use DPBF in the full DBLP graph. Consequently,

we use DPBF only in the full Amazon and Movie graphs, but not in
the full DBLP graph, in the following experiments.

Evaluation of solution quality and speed in full graphs. We

evaluate the solution quality and speed of algorithms in full graphs

in Figure 4c. In Figures 4c (1-3), the solution weights of GRE-TREE
and GRE-PATH are significantly lower than those of the baseline

algorithms. This shows the effectiveness of GRE-TREE and GRE-
PATH for finding probabilistic group Steiner trees. By comparing

the lower bounds, it can be seen that the solution weights of GRE-
PATH are roughly at most 200% of the optimal solution weights for

Amazon, and 400% for DBLP and Movie. For Amazon and DBLP in

Figures 4c (4-5), GRE-PATH is faster than the baselines. ForMovie
in Figure 4c (6), GRE-PATH is considerably slower than ImprovAPP,
and has a similar speed with the other baselines. The reason why

GRE-PATH does not have a high efficiency for Movie is that the
time complexity ofGRE-PATH is in proportion to |𝑔𝑚𝑖𝑛 |, and |𝑔𝑚𝑖𝑛 |
is large forMovie, as shown in the supplement [6].

Variation of the number of vertex groups: |Γ |. We vary |Γ | in
Figure 5a. In Figures 5a (1-3), the solution weights increase with

|Γ |, since larger trees are required to cover more vertex groups.

Similarly, the lower bounds increase with |Γ |. We further observe

that the superior solution qualities of GRE-TREE and GRE-PATH
over baselines hold well as |Γ | varies. In Figures 5a (4-6), DPBF,
PrunedDP++ and GRE-TREE do not scale well to |Γ |. The reason
is that these algorithms have exponential time complexities with

respect to |Γ |. In contrast, ENSteiner, ImprovAPP and GRE-PATH
often scale well to |Γ |. Given that GRE-PATH finds high-quality

solutions, it is preferable to use GRE-PATH when |Γ | is large.

Variation of the threshold value: 𝑏.We vary the threshold value

𝑏 in Figure 5b. The solution weights generally increase with 𝑏,

since solution trees need to contain more vertices for satisfactorily

covering all groups as 𝑏 increases. The lower bounds do not change

with 𝑏, since these lower bounds are weights of optimal classical

group Steiner trees, which have no relation with 𝑏. Similarly, the

lower bounds do not change with the following 𝜏 , 𝑃𝑚𝑖𝑛 , 𝑃𝑚𝑎𝑥 and 𝑘 .

In Figure 5b (4), the running time of GRE-TREE may increase with

𝑏, since it needs to employ PrunedDP++ to find and concatenate

more trees for satisfactorily covering all groups as 𝑏 increases.

Variation of the approximation parameter: 𝜏 . We vary the pa-

rameter 𝜏 in GRE-TREE and PrunedDP++ in Figure 5c. In Figure 5c

(1), the solution weight of GRE-TREE slightly increases with 𝜏 . The

reason is that 𝜏 is the approximation ratio of PrunedDP++ for solv-

ing the classical group Steiner tree problem. As a result, the solution

weight of PrunedDP++ for a specific classical group Steiner tree

instance increases with 𝜏 . Since GRE-TREE employs PrunedDP++
to find and concatenate trees, the weights of trees concatenated by

GRE-TREE generally increase with 𝜏 . In Figures 5c (4-6), the running
times of GRE-TREE and PrunedDP++ decrease with 𝜏 , since the

number of enumerated trees in the dynamic programming process

of PrunedDP++ decreases with 𝜏 .

Variation of the minimum and maximum positive probabil-
ity values: 𝑃𝑚𝑖𝑛 and 𝑃𝑚𝑎𝑥 . We vary 𝑃𝑚𝑖𝑛 and 𝑃𝑚𝑎𝑥 in Figures 6a

and 6b. We observe that the solution weights often decrease with

𝑃𝑚𝑖𝑛 and 𝑃𝑚𝑎𝑥 , since fewer vertices are required to satisfactorily

cover vertex groups as probability values increase. We also observe

that the running times of algorithms may decrease with 𝑃𝑚𝑎𝑥 , e.g.,
the running times of GRE-TREE and ImprovAPP in Figure 6b (4)

decrease with 𝑃𝑚𝑎𝑥 . The reason is that these algorithms may merge

fewer trees or paths as probability values increase.

Variation of the number of feasible solutions in baselines: 𝑘 .
We vary 𝑘 in Figure 6c. In Figures 6c (1-3), the solution weights of

baselines decrease with 𝑘 , since each baseline computes 𝑘 feasible

solutions and returns the best one. For the same reason, in Figures

6c (4-6), the running times of baselines increase with 𝑘 . Notably, the

solution weights of baselines are still considerably larger than those

of GRE-TREE and GRE-PATHwhen 𝑘 = 7. In particular, when 𝑘 = 7,

GRE-PATH is often significantly faster than baselines, and produces

solutions with considerably smaller weights than baselines, i.e.,
GRE-PATH still outperforms baselines when 𝑘 = 7.

Key observations in experiments. To help analyze the above

experiment results, we summarize the key observations as follows.

• DUAL can only be used in tiny graphs with dozens of vertices,

and thus is mainly of theoretical interests (see Figures 4a (4-6)).

• GRE-TREE produces better solutions than the other algorithms,

e.g., Figures 4b (1-3), but does not scale well to group sizes (see

Figure 4b (6) and the densities of group sizes in Figure 3). As

a result, GRE-TREE is only useful when group sizes are small

and graph sizes are not extremely large, e.g., for Amazon.
• GRE-PATH produces considerably better solutions than the

baseline algorithms, while scaling well to large graphs, e.g., Fig-
ures 4c (1-6), and thus is a favorable tool for finding probabilistic

group Steiner trees in various cases.

• The superior solution qualities of GRE-TREE and GRE-PATH
over the baseline algorithms hold well when varying the pa-

rameters |Γ |, 𝑏, 𝜏 , 𝑃𝑚𝑖𝑛 , 𝑃𝑚𝑎𝑥 and 𝑘 (see Figures 5 and 6).

4.4 A case study
Here, we conduct a case study using the Movie dataset. We also

conduct case studies using the Amazon and DBLP datasets in the

supplement [6]. For Movie, suppose that a user queries two genres:

{War, Sci-Fi}. To help this user find related movies, we input two

corresponding vertex groups, and apply the existing ImprovAPP and
the proposed GRE-PATH to solve the classical and the probabilistic

group Steiner tree problems, respectively. The existing ImprovAPP
does not consider the probabilities of vertices for covering groups,

and returns the single movie “Mobile Suit Gundam III: Encounters



(a) The retrieved movie via the classical approach.

(b) The retrieved movies via the probabilistic approach.

Figure 7: A case study based on theMovie dataset.

in Space”, as shown in Figure 7a. This movie has a probability of 0.8

of satisfying the user for each input genre, which is smaller than the

default threshold value 𝑏 = 0.9. In comparison, the proposed GRE-
PATH considers the probabilities of vertices for covering groups, and

returns two related movies “Mobile Suit Gundam III: Encounters in

Space” and “Mobile Suit Gundam II: Soldiers of Sorrow”, as shown

in Figure 7b. These two movies collectively have a probability of

1− (1− 0.8) · (1− 0.74) = 0.948 of satisfying the user for each input

genre, which is larger than 𝑏. This case shows that, in probabilistic

scenarios, we could retrieve information that is more likely to be

favorable via the probabilistic group Steiner tree approach than via

the classical group Steiner tree approach.

5 RELATEDWORK
Reich and Widmayer [34] originally formulated the classical group

Steiner tree problem for designing very-large-scale integrated cir-

cuits. A lot of recent work finds this problem useful for data mining,

as discussed in the beginning of this paper. Three types of algo-

rithms have been developed for finding classical group Steiner trees:

heuristic (e.g., [21, 34]) and approximation (e.g., [10, 17, 19, 20, 37])
algorithms that find sub-optimal solutions without and with worst-

case quality guarantees, respectively, and exact (e.g., [13, 25]) algo-
rithms that find optimal solutions. The heuristic algorithm in [21],

dubbed ENSteiner, finds sub-optimal solutions via a transforma-

tion [15] from group Steiner trees to Steiner trees. Wang et al. [40]
shows that ENSteiner is efficient and often finds high-quality solu-

tions in practice, and thus can be seen as a state-of-the-art heuristic

algorithm. Meanwhile, most existing approximation algorithms

focus on achieving tight, often poly-logarithmic, approximation

guarantees at the cost of large time complexities (e.g., [17, 19]),
and are not scalable in practice. Different from these algorithms,

the recently developed (|Γ | − 1)-approximation algorithm in [37],

dubbed ImprovAPP, improves a previous (|Γ | − 1)-approximation

algorithm [20] on both efficiency and practical solution quality,

and scales well in practice. Thus, ImprovAPP can be considered as

a state-of-the-art scalable approximation algorithm. With respect

to exact algorithms, the dynamic programming algorithm in [13],

dubbedDPBF, is the first exact algorithm for finding classical group

Steiner trees. Recently, Li et al. [25] improves DPBF on practical

efficiency by incorporating pruning techniques into the dynamic

programming process. The improvement, dubbed PrunedDP++, is
a state-of-the-art exact algorithm. All the above algorithms do not

consider the probabilities of vertices for covering groups, and thus

do not suit retrieving information from graph-structured datasets

with uncertain vertex properties, like the academic datasets labeled

by current artificial intelligence techniques [1, 4], as discussed in

Section 1. Moreover, as discussed in Section 1, the existing work

on probabilistic databases (e.g., [8, 14, 24, 29–31, 33, 35, 36, 39, 42–
45]) focuses on performing different tasks, and cannot address this

issue. This motivates us to develop new algorithms for finding

probabilistic group Steiner trees in this paper.

6 CONCLUSIONS AND FUTUREWORK
Solving the probabilistic group Steiner tree problem is useful for

mining various graph-structured datasets with uncertain vertex

properties. To the best of our knowledge, no work has been done

to solve this problem to date. We address this issue by proposing

three approximation algorithms, dubbed DUAL, GRE-TREE and

GRE-PATH, that vary with approximation guarantees and time

complexities for solving this problem. Experiments on real datasets

show that (i) DUAL can only be used in tiny graphs with dozens

of vertices, and thus is mainly of theoretical interests; (ii) GRE-
TREE produces better solutions than the other algorithms, and is

efficient when group sizes are small; and (iii) GRE-PATH produces

considerably better solutions than the state-of-the-art techniques,

while scaling well to large graphs.

As discussed in Sections 1 & 2, like a lot of work on probabilistic

data management (e.g., [8, 14, 42, 43]), we consider that different
probability values are independent from each other. There are also

cases where different probability values may correlate with each

other, e.g., given two vertices 𝑣1 and 𝑣2, and two groups 𝑔1 and 𝑔2,

𝑝𝑔1 (𝑣1) and 𝑝𝑔2 (𝑣1) may correlate with each other, or 𝑝𝑔1 (𝑣1) and
𝑝𝑔1 (𝑣2) may correlate with each other. Studying such correlated

cases is a challenging, but meaningful, future work to do.

Notably, we use weights of optimal classical group Steiner trees

as lower bounds in experiments. These lower bounds may not

be tight enough to estimate the practical solution qualities of the

proposed algorithms well, e.g., in Figures 4c (2-3), the fact that the

solution weights ofGRE-PATH are around 400% of the lower bounds

does not mean that the solution weights of GRE-PATH are around

400% of the optimal solution weights, since these lower bounds may

be much smaller than the optimal solution weights. It is preferable

to develop tighter lower bounds in the future to better estimate the

practical solution qualities of the proposed algorithms.

Further note that, for each vertex 𝑣 ∈ 𝑔𝑚𝑖𝑛 , GRE-PATH merges

paths between 𝑣 and other vertices in an increasing order of the

weights of paths. It may be worth exploring new ordering and merg-

ing methods in the future, for achieving stronger approximation

guarantees, or higher efficiencies and solution qualities in practice.
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