
950 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 6, JUNE 2024

G-Learned Index: Enabling Efficient Learned Index
on GPU

Jiesong Liu , Feng Zhang , Member, IEEE, Lv Lu , Chang Qi , Xiaoguang Guo , Dong Deng ,
Guoliang Li , Huanchen Zhang , Jidong Zhai , Senior Member, IEEE, Hechen Zhang , Yuxing Chen ,

Anqun Pan , and Xiaoyong Du , Member, IEEE

Abstract—AI and GPU technologies have been widely applied
to solve Big Data problems. The total data volume worldwide
reaches 200 zettabytes in 2022. How to efficiently index the required
content among massive data becomes serious. Recently, a promising
learned index has been proposed to address this challenge: It has
extremely high efficiency while retaining marginal space overhead.
However, we notice that previous learned indexes have mainly
focused on CPU architecture, while ignoring the advantages of
GPU. Because traditional indexes like B-Tree, LSM, and bitmap
have greatly benefited from GPU acceleration, a combination of a
learned index and GPU has great potentials to reach tremendous
speedups. In this paper, we propose a GPU-based learned index,
called G-Learned Index, to significantly improve the performance
of learned index structures. The primary challenges in develop-
ing G-Learned Index lie in the use of thousands of GPU cores
including minimization of synchronization and branch divergence,
data structure design for parallel operations, and usage of mem-
ory bandwidth including limited memory transactions and multi-
memory hierarchy. To overcome these challenges, a series of novel
technologies are developed, including efficient thread organization,
succinct data structures, and heterogeneous memory hierarchy
utilization. Compared to the state-of-the-art learned index, the
proposed G-Learned Index achieves an average of 174× speedup
(and 107× of its parallel version). Meanwhile, we attain 2× less
query time over the state-of-the-art GPU B-Tree. Our further

Manuscript received 11 April 2023; revised 9 January 2024; accepted 15
March 2024. Date of publication 2 April 2024; date of current version 12 April
2024. This work was supported in part by the National Key R&D Program of
China under Grant 2022ZD0115304, in part by the National Natural Science
Foundation of China under Grant 62072458, Grant 62172419, Grant 62225206,
and Grant U20A20226, and in part by Beijing Nova Program under Grant
20220484137 and Grant 20230484397. Recommended for acceptance by D.
Li. (Corresponding author: Feng Zhang.)

Jiesong Liu, Feng Zhang, Lv Lu, Chang Qi, Xiaoguang Guo, and Xiaoyong
Du are with the Key Laboratory of Data Engineering and Knowledge Engineer-
ing (MOE), and School of Information, Renmin University of China, Beijing
100872, China (e-mail: liujiesong@ruc.edu.cn; fengzhang@ruc.edu.cn; lvlu
@ruc.edu.cn; 2018202121@ruc.edu.cn; xiaoguangguo@ruc.edu.cn; duyong
@ruc.edu.cn).

Dong Deng is with the Computer Science Department, Rutgers University,
New Brunswick, NJ 08854 USA (e-mail: dong.deng@rutgers.edu).

Guoliang Li and Jidong Zhai are with the Department of Computer Science
and Technology, Tsinghua University, Beijing 100084, China (e-mail: liguoliang
@tsinghua.edu.cn; zhaijidong@tsinghua.edu.cn).

Huanchen Zhang is with the IIIS, Tsinghua University, Beijing 100084, China
(e-mail: huanchen@tsinghua.edu.cn).

Hechen Zhang is with the High School Affiliated, Renmin University of China,
Beijing 100080, China (e-mail: zhanghechen2@gmail.com).

Yuxing Chen and Anqun Pan are with the Database R&D Department, Ten-
cent, Shenzhen 518000, China (e-mail: axingguchen@tencent.com; aaronpan
@tencent.com).

We have made G-Learned Index available at https://github.com/Fred1031/G-
Learned-Index.

Digital Object Identifier 10.1109/TPDS.2024.3381214

exploration of range queries shows that G-Learned Index is 17×
faster than CPU multi-dimensional learned index.

Index Terms—Learned index, parallel, GPU, acceleration.

I. INTRODUCTION

THE currently increasing amounts of data pose significant
hurdles in terms of efficient data accesses. For example,

the total data volume stored worldwide reaches 200 zettabytes
in 2022 [1], and 11.45 zettabytes of data are generated every-
day [2]. Index structures such as B-Tree [3], hash tables [4],
and Bloom filters [5] are required for efficient data access.
In recent years, Kraska et al. [6] proposed a promising trans-
formative understanding of the index problem – Indexes are
models that can be trained to map keys to their locations in
a sorted order. More specifically, the position of a key can be
estimated in a sorted array if the cumulative data distribution
function f of the given dataset can be learned, and accordingly,
traditional index structures can be replaced by f . This “learned”
approach achieves significant time and space benefits compared
to traditional indexes. Further, GPUs are effective and popular
accelerators for index structures [7], [8], [9], [10], [11], [12]
and machine learning [13], [14], [15]. In particular, the contexts
of batch operations in dynamic scenario are perfectly suited
for GPU parallelism. In fact, many index structures, such as
B-Tree [7], have already been proven to be successfully accel-
erated by executing batch operations on GPUs, bringing even
more than 60× performance improvement [7]. Therefore, we
consider it essential to enable the learned index on GPUs to
further improve its performance [16], [17], [18].

Enabling efficient learned indexes on GPUs has three major
advantages. First, thousands of GPU cores offer huge potentials
for dramatically increasing the performance of learned indexes.
For example, the NVIDIA GeForce RTX 2080 Ti GPU [19]
features 4352 cores, making it highly efficient for executing
parallel jobs in specifically designed workloads [20]. Second,
comparable workloads, such as B-Tree, matrix computation,
and machine learning, have already benefited significantly from
GPU acceleration. For example, research [18] shows that GPU
LSM can obtain a 13.5× performance boost from GPU. Higher
gains in learned index performance can be expected because they
advance intelligent structure design in terms of time efficiency
and more crucially, space savings. Third, GPUs have been
widely used in database operations, and the GPU-based learned

1045-9219 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 02,2024 at 01:07:20 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-8311-020X
https://orcid.org/0000-0003-1983-7321
https://orcid.org/0009-0004-8448-2250
https://orcid.org/0009-0009-1009-6425
https://orcid.org/0000-0003-2795-2856
https://orcid.org/0000-0002-4596-3850
https://orcid.org/0000-0002-1398-0621
https://orcid.org/0009-0001-4821-1558
https://orcid.org/0000-0002-7656-6428
https://orcid.org/0009-0005-6694-4834
https://orcid.org/0000-0002-6220-2535
https://orcid.org/0000-0002-6756-149X
https://orcid.org/0000-0002-5757-9135
mailto:liujiesong@ruc.edu.cn
mailto:fengzhang@ruc.edu.cn
mailto:lvlu@ruc.edu.cn
mailto:lvlu@ruc.edu.cn
mailto:2018202121@ruc.edu.cn
mailto:xiaoguangguo@ruc.edu.cn
mailto:duyong@ruc.edu.cn
mailto:duyong@ruc.edu.cn
mailto:dong.deng@rutgers.edu
mailto:liguoliang@tsinghua.edu.cn
mailto:liguoliang@tsinghua.edu.cn
mailto:zhaijidong@tsinghua.edu.cn
mailto:huanchen@tsinghua.edu.cn
mailto:zhanghechen2@gmail.com
mailto:axingguchen@tencent.com
mailto:aaronpan@tencent.com
mailto:aaronpan@tencent.com
https://github.com/Fred1031/G-Learned-Index
https://github.com/Fred1031/G-Learned-Index

LIU et al.: G-LEARNED INDEX: ENABLING EFFICIENT LEARNED INDEX ON GPU 951

Fig. 1. Use case of GPU-based index in gene retrieval.

index can operate as a sub-component that expands the possi-
bilities for GPU query engines, e.g., MapD [21]. Eventually, we
can use an epoch based strategy to integrate our index into a
full-fledged database system [22], [23], [24], an approach that
has been widely used in database systems, e.g., BatchDB [25].
The basic idea is to split the queries in epochs and concurrently
process the queries in each epoch.

We show a use case of applying GPU-based learned index in
gene retrieval [26] in Fig. 1. In gene retrieval scenario, a large
amount of newly-generated patterns, e.g., gene segments [26]
and molecular structures [27], are required for matching in a
given pool. For example, the synthesized patterns that need to
be matched for a standard laboratory can reach two kilobase
pairs each time [27], requiring high throughput of data retrieval.
Because learned index, e.g., RMI and PGM-index, and GPU can
provide high throughput, similar tasks can benefit greatly from
GPU-based learned index. Other application scenarios, such as
parallel nested loop join [28], can also benefit. More details are
elaborated in Section III-B.

Although enabling learned index on GPUs is both advanta-
geous and necessary, developing an efficient GPU-based learned
index faces three major challenges.

First, the performance of GPU-based learned index is highly
dependent on the GPU’s thousands of cores being fully utilized.
This poses substantial difficulty on GPU-based learned indexes
because learned indexes entail fundamental dependency be-
tween operation phases that is not ideal for parallelism. Namely,
for a query, operations on the next level in the recursive structures
are dependent on the output of the model in the upper level of
learned index [29], which is extremely unfriendly to the SIMT
GPU working pattern [30].

Second, the multiple levels of learned index need to adapt to
the complicated GPU memory hierarchy. The size of learned
indexes varies depending on the dataset and the precision loss
ε [29]. For example, a huge dataset with a large ε can also result
in an index structure that is compact enough to fit into the shared
memory on GPU. In contrast, if a small ε is applied, the produced
structure of even a relatively small dataset has to be located on
global memory. Therefore, the configurations of learned indexes
need to be adjusted.

Third, the complicated index structures and operation algo-
rithms pose difficulties to space occupation and time complexity.
In terms of space concerns, a complete index structure can be
too large to put onto a GPU device due to space constraints.
For example, GPU cannot hold index structures with more than
millions of elements. As for execution time, query operations

rely on recursive searches for learned indexes, which is time-
consuming.

There is a large literature of learned indexes [31], but none
can address the above challenges in applying learned index on
GPUs. In detail, there are currently two mainstream learned
indexes that successfully achieve significant time and space
savings: the Recursive Model Index (RMI) [6], an innovative
hierarchical structure integrated with machine learning models,
and the Piecewise Geometric Model index (PGM-index) [29],
which uses algorithmically generated linear regression models to
approximate key positions. More recent studies have stated that
models on the bottom level of the learned index can be replaced
by B-Trees to maintain a balanced partition and improve preci-
sion [16], [32], [33]. However, these studies of learned index are
mostly concerned with the algorithm on CPU architectures.

In this paper, we propose a GPU-based learned index, called
G-Learned Index, which enables efficient learned indexes on
GPUs. G-Learned Index incorporates three innovative features
and can address the three challenges listed above. First, we cre-
ate a fine-grained synchronization-free approach for processing
batch queries with low branch divergence. Second, we develop
a novel heterogeneous model to maintain a succinct structure
on GPUs and a lock-step working pattern for various query
operations. Third, to achieve maximum bandwidth efficiency,
we adaptively separate the structures of G-Learned Index and
place them into distinct hierarchical memories on the GPU.

We evaluate G-Learned Index on four real-world datasets and
four synthetic datasets with different data types and key sizes.
Experiments show that G-Learned Index achieves an average of
3050× speedup in throughput over the state-of-the-art learned
index. Compared to the state-of-the-art B-Tree on GPU, G-
Learned Index achieves 34× performance speedup on average,
and saves orders of magnitudes of space on various workloads.
Furthermore, G-Learned Index is applicable and indexable in
multidimensional space, where it achieves an average of 152×
reduction in query time compared to R-Tree and a 97% decrease
in space. We summarize our contributions as follows.
� We develop a dynamic learned index on GPUs with an

intelligent design that is optimized for queries and updates.
� We design an efficient indexing strategy that achieves

coalesced memory access and reduced branch divergence,
both for point queries and multi-dimensional queries.

� We extensively assess G-Learned Index on eight datasets
and demonstrate its significant advantages over the state-
of-the-art methods.

II. BACKGROUND

A. Learned Index Structures

Learned indexes combine the index structures with the idea of
machine learning, and they regard indexes as trainable models.
More precisely, assume that we query the position of the key
k in the sorted array A; indexes are viewed as models with k
as the input and predict the position of k in A. To accomplish
this, the Cumulative Distribution Function (CDF) f of A must
be learned, and the position of k can be obtained by multiplying
N by f(k), where N denotes the size of A. To assist the

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 02,2024 at 01:07:20 UTC from IEEE Xplore. Restrictions apply.

952 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 6, JUNE 2024

Fig. 2. Recursive search process of x = 58 in a three-level PGM-index with
ε = 1.

learning process of the function, models ranging from the linear
functions to more sophisticated machine learning strategies have
been explored [6], [29], [34]. Currently, the best-known learned
index models are the Recursive Model Index (RMI) [6] and the
Piecewise Geometric Model (PGM-index) [29].

Recursive Model Index (RMI): RMI is a multi-level recursive
regression model that is organized as a hierarchical Directed
Acyclic Graph (DAG). Each node in the graph represents a
model that behaves like a CDF. When a key k is queried, we
obtain the model denoted by the node in the first level. Note that
there is only one node in the first level. We take k as input and
keep the model’s output, which is used to select the model for
the next level. By repeating these operations, we can obtain the
output of the entire RMI at the last model in the last level. The
output can be interpreted as the estimated position of k in the
array A. Finally, we perform the “last mile” search to determine
the real location of k.

Piecewise Geometric Model index (PGM-index): The PGM-
index is another learned index structure that occupies a promi-
nent place with its succinct structure for constructing algorithmic
models to learn data distributions [29]. By solving the sim-
plified Piecewise Linear Approximation (PLA) problem, the
PGM-index develops a Fitting-Tree [35], which provides a more
specific and interpretable method to learn the data distribution. In
other words, for a given deviation bound ε ≥ 1, the Fitting-Tree
generates a combination of linear models [34]. Specifically, the
optimal PLA finds a minimum number of linear model groups for
a given array A[0, b], such that each linear model is responsible
for an indexing subset A[ai, bi]. Each linear model is referred to
as a segment. Note that a segment is a tuple of three elements,
(key, slope, intercept). For an input A[x], x ∈ [ai, bi], the cor-
responding linear model returns its estimated position y, which
guarantees |y − x| ≤ ε. Satisfying the optimization principle
and Markov property, an O(n3) Dynamic Programming (DP)
algorithm is generated to solve this PLA problem, whereas it
admits a streaming algorithm in linear optimal space and time
after extensive study [36].

For a query specified byx, the PGM-index retrieves the visited
segment in the current level and uses it to estimate the position
of x of the next segments. A binary search inside the 2ε range
centered on the estimated position is then used to determine the
accurate position.

Example: An example of PGM-index query x = 58 with
ε = 1 is shown in Fig. 2. At the highest level, we have
�x · sl00 + ic00� = 1. Then, in levels[1][1− ε, 1 + ε], we look
for x inside the key range [2, 33, 102]. Following a binary

search, the segment levels[1][1] (encircled by the blue bracket)
is returned because x falls within 33 and 102. We conduct
a similar process by first calculating �x · sl11 + ic11� = 2 and
finding segment levels[2][3] in levels[2][2− ε, 2 + ε] among
keys [23, 33, 51]. Up to now, we take four procedures to reach
the segment at the lowest bottom level. In the lowest level, we
have �x · sl23 + ic23� = 12. A search process is then performed
in A[12− ε, 12 + ε] among the keys [51, 53, 58] before the
accurate position of 13 is identified.

B. General-Purpose Computing on GPU

GPUs are widely recognized as high-performance comput-
ing (HPC) accelerators and have garnered significant attention
from the research community. Numerous applications [7], [18],
[37], [38], [39], [40] involving a large number of independent
parallel tasks have demonstrated substantial performance im-
provements. A GPU contains several Streaming Multiprocessors
(SMs), and each SM contains a large number of light-weight
cores. Threads are grouped into blocks, which are then assigned
to SMs. During execution, the threads in each SM are executed
in warp granularity, which means that threads within the same
warp must be executed in a single-instruction-multiple-threads
mechanism (SIMT). Furthermore, GPU features a special mem-
ory called shared memory, referring to a small, fast memory
space that is physically located on each SM. It is designed to be
accessible by all threads within a CUDA thread block, enabling
efficient communication and data sharing among GPU threads
during parallel processing kernels. There are also more periph-
eral storage areas, including the L1 cache located independently
on each SM, the L2 cache shared across SMs, and a global
memory that is accessible to all threads but has a slower transfer
speed.

GPU applications: GPUs have been successfully used in
a variety of applications, including data science and machine
learning. For example, GPUs have been used in data manage-
ment systems [37]. Besides, traditional index data structures,
such as B-tree [7], B+-tree [8], and LSM tree [18], all can be
accelerated by GPUs. Machine learning workloads such as linear
regression models [41] and neural network models, including
fully connected networks [42], recurrent neural networks [39],
and convolutional neural networks [40], can all benefit from
GPU acceleration. Hence, we believe that learned indexes also
have significant acceleration potentials, although challenges
must be overcome.

Directly applying the previous work to GPU is challenging.
First, learned indexes involve a fundamental dependency be-
tween operation phases, making it difficult to fully leverage the
thousands of cores on a GPU. This is because a single thread is
not optimal for handling complex instructions. Second, GPU
has its own memory hierarchy, such as shared memory that
is accessible to the threads within a CUDA block. It requires
special designs to effectively utilize the various types of memory.
Third, the limited memory space on a GPU presents a hurdle
for previous learned index implementations, as the complete
index structure may be too large to fit within the device’s space
constraints.

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 02,2024 at 01:07:20 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: G-LEARNED INDEX: ENABLING EFFICIENT LEARNED INDEX ON GPU 953

III. MOTIVATION

A. Developing Learned Index on GPUs

Guidelines: First, granularity should be an important fac-
tor. Second, diving into operator-level and calculation-level
design strengthens the efficacy of the GPU-based models.
Third, the feasibility and flexibility of thread assignment
working on the structure should be considered.

Idea: As discussed in Section I, it is necessary to develop
learned index on GPUs. To fully leverage GPU resources, our
basic idea is to process queries in parallel. Building machine
learning models is well suited for GPUs because matrix multi-
plications in both training and inference phases can significantly
benefit from GPU’s high parallelism. Accordingly, our first
attempt is to launch multiple GPU threads working cooperatively
for a single index in both RMI and PGM-index. However, coor-
dinating different threads under a single query is much harder
than a one-thread-one-query working pattern. Furthermore, the
overhead of transferring data between CPU and GPU could not
be neglected.

The second approach is to assign each query to a single
thread and indexing the queries concurrently. In other words, we
process indexes in queries at batch granularity. Due to massive
numbers of GPU threads, applying GPU has great potential to
achieve higher query throughput than CPU-based learned in-
dexes. Accordingly, we need to construct a structure that matches
the indexing strategy and supports efficient data transmission
between CPUs and GPUs, because data transfer is an important
factor affecting performance.

Comparison of RMI and PGM-index: We next analyze the in-
dex options. Specifically, the intent is to execute the same opera-
tions among different GPU threads according to the SIMD work-
ing pattern. In the RMI [6] inference phase, different queries
follow varying searching patterns, arriving at different nodes
with diverse machine learning models. Operations conducted on
respective threads differ from each other, which causes branch
divergence, making it hard to fully leverage the GPU resource.
Further, the large number of fine-tuned parameters in various
RMI machine learning models leads to more uncertain models.
In contrast, the PGM-index [29] has only three parameters for
a linear model, and maintains a succinct index structure. These
attributes make it more suitable for GPUs.

Identifying PGM-index as our focus: In conclusion, we de-
velop a GPU-accelerated learned index based on the PGM-index
mainly for two reasons. First, the PGM-index structure is rel-
atively simple and enables efficient data movement between
CPUs and GPUs. The cost of time and space of the index
structure is marginal. For example, the index constructed on 1e7
numbers with ε = 32 only takes the space occupancy of 43 KB,
which takes 0.01 ms of data transfer. In addition, the PGM-index
has a low search cost that scales logarithmically with ε. Second,
the PGM-index lends itself to parallelism. In particular, each step
involves the same operations between different threads. This
is an ideal characteristic for GPU parallel computing to bring

out the optimal of GPU efficacy. Moreover, the PGM-index can
guarantee a precision loss of ε.

B. Case Study

GPU-based learned index encapsulates the field of learned
index technologies, which can be used to accelerate many appli-
cations. We use parallel nested loop join as a case study to show
the motivation for in-memory relational database systems.

Task formalization: Assume we conduct join queries on two
relations R and S. R and S are binary tables [43], each of
which consists of two integer attributes, index and value.
The SQL query is “SELECT R.index = S.index FROM R,S
WHERE (R.index = S.index) AND ((R.value < S.value)
OR (R.value=S.value) OR (R.value > S.value))”.R is the
outer table and S is the inner table. We can build a GPU-based
learned index on the inner relation S, and issue a read-only
query for each record in R in parallel. In this parallel indexed
nested loop join, we can obtain significant performance speedups
by processing concurrent read-only queries with the help of
GPU-based learned index.

Parameters: Various parameters that can influence the perfor-
mance of parallel indexed nested loop joins need to be consid-
ered. For example, we denote the percentage of outer records
whose corresponding matches can be found in the inner table as
match rate. The GPU-based learned index can work well for
situations where a record in an external table does not match
an internal record. Besides, we consider index rep, the average
repetitions of matches for each outer record. For example, an
index rep of 10 indicates that there is an average of 10 matched
records in the inner table for each index value.

Integration to databases: GPU-based learned index can be
integrated into end-to-end databases such as GPU-accelerated
VoltDB [28]. All that needs to do is to replace the index in VoltDB
with the GPU-based learned index and process queries in epochs.
For table join setting such as the SQL query mentioned in the
task formalization, indexing occupies the majority of processing
time, and the GPU-based learned index can greatly improve the
system performance. More detailed experiments are elaborated
in Section VI.

Applying GPU-based learned index to other scenarios:
Many applications can benefit from GPU-based learned index
with batch indexing. First, pattern matching in information
pools [44], such as gene retrieval as elaborated in Section I,
can be greatly accelerated. Second, for high concurrency work-
loads [45], e.g., Black Friday [46], GPU-based learned index
can be used to handle such batching queries. Third, for machine
learning feature stores [47], analysts need to retrieve training and
testing records from diverse datasets among different tasks [48].
We can use GPU-based learned index to select training and
testing records concurrently.

Potential analysis: We analyze the proportion of indexing in
three applications of nested loop join, pattern matching, and
feature store to explore the potential performance benefits of
GPU-based learned index, as shown in Fig. 3. For nested loop
join, we use two synthetic datasets. For the pattern matching task,
we use a real-world dataset. For feature map task, we use the

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 02,2024 at 01:07:20 UTC from IEEE Xplore. Restrictions apply.

954 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 6, JUNE 2024

Fig. 3. Running time breakdown of different workloads.

taxi rides made in New York City [49]. The details are covered
in Section VI-B. On average, indexing accounts for more than
80% of the time, which means that indexing has become the
bottleneck of these applications and the GPU-based learned
index can potentially bring significant performance boost.

IV. OVERVIEW OF G-LEARNED INDEX

We propose a GPU-based learned index, called G-Learned
Index, which can enable efficient learned index on GPUs. Fig. 4
depicts an overview of G-Learned Index, which consists of four
major components: 1) architecture construction, 2) hierarchical
memory arrangement, 3) query execution, and 4) multidimen-
sional index. These components combine to generate G-Learned
Index.

The first component is architecture construction. The archi-
tecture comprises two phases. The first phase is heterogeneous
structure preparation. Specifically, we place all the segments on
the GPU and array A containing the original data on the CPU.
The motivation for this placement is that A can be too large to
fit into the GPU memory. For the smaller size of A, we do the
same placement for optimal performance, which is explored in
Section V-A. The second phase is parametric auto-fitting, and it
is an adaptive tune-up method for refining the model parameters,
namely the precision loss ε.

The second component is hierarchical memory arrange-
ment, which fits our heterogeneous model to the memory hi-
erarchy of the GPU. In detail, we separate the storage into a
hierarchy based on response time. Storing segments on GPU’s
shared memory results in faster data transfer because of higher
bandwidth. If the size of the segments is too large, those seg-
ments exceeding the shared memory limits should be separately
stored in GPU’s global memory.

The third component of G-Learned Index is concurrent batch
query execution. This is the component responsible for index-
ing our G-Learned Index. The query execution for concurrent
batch processing should have features of advantageous mu-
tability, accessibility, and flexibility. Specifically, we employ
an additional lookahead strategy selection to determine the
indexing strategy. We discuss our observations and insights in
Section V-B.

The fourth component is the multidimensional index. We ex-
pand our G-Learned Index application to spatial circumstances

in order to index two-dimensional objects and perform range
queries. Following a dimension reduction, each two-dimensional
object is assigned to a one-dimensional address. This enables
numerical comparison of two objects, thus making data sorting,
and ultimately, data distribution learning possible. After that, a
border query and a region check are performed in turn to obtain
the final indexing results.

Novelties: There are three major novelties in G-Learned In-
dex. First, it parallelizes the updatable PGM learned index using
thousands of GPU cores, considerably improving the speed
of learned indexes to an unprecedentedly high throughput for
batch queries. Second, our carefully constructed heterogeneous
structure caters to varied features of CPUs and GPUs, taking into
account both learned index structure characteristics and device
architecture properties. Third, we develop a multidimensional
learned index on GPUs that can tackle spatial queries in parallel.

We next show the detailed design of G-Learned Index.

V. DETAILED DESIGN

In this section, we first describe how the proposed heteroge-
neous architecture is built and indexed in Sections V-A and V-B.
Then, we specify the data structures we employ in Section V-C,
accompanied by the discussion of insertions and deletions in
Section V-D and multidimensional index in Section V-E.

A. Architecture Construction

Heterogeneous structure preparation: In this module, we split
the index into two parts and distribute them to CPU and GPU,
respectively. We start by conducting the part-division job. The
first part is levels of segments generated by the PLA-model [29],
[34], and the second part is a dynamically allocated container
array A. This split design takes advantage of the following in-
sight. Although a PGM-index is able to index enormous datasets,
G-Learned Index is constrained by the limited capacity available
on GPUs. Fortunately, we observe that even when a large amount
of space is required for array A, the last level of segments never
takes up much space since the number of segments in that level
is empirically small (a theoretical bound is n/(2ε)). Thus the
GPU memory is sufficient for storing those segments. Based
on the above analysis, we divide G-Learned Index into two
parts — the array A storing keys in the original dataset, and
segments produced by the PGM index — and place A on CPU
and segments on GPU. For smaller size of A, we take this same
placement because it can achieve better performance. The reason
is that the binary search range is larger on A than on any other
segment levels, and binary search among large ranges is not
efficient on the GPU.

Parametric auto-fitting: We focus on optimizing the index
in this parametric auto-fitting module, which mainly depends
on the choice of ε to control the number of segments in our
index. The number of segments has a significant impact on space
occupancy and query performance. Meanwhile, a varying ε itself
can influence the search time when pinpointing the accurate
position in the range of length 2ε. Therefore, the complexity of
time and space is complicated in relation to ε. In our design, we
first conduct a theoretical analysis and then choose an optimal

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 02,2024 at 01:07:20 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: G-LEARNED INDEX: ENABLING EFFICIENT LEARNED INDEX ON GPU 955

Fig. 4. Overview of G-Learned Index.

ε. The theoretical analysis follows two steps. First, we look into
the procedures it takes for indexing a key k in the model and
how the choice of ε can affect those procedures. In the second
step, we provide a detailed analysis to support the division of
the procedures theoretically.

In the first step, we divide the procedures of a searching
process for k into two types. One (type1 procedures in Fig. 4)
consists of two procedures: 1) a mapping from the corresponding
segment in the last level to a predicted position inAwith an error
of ε on the GPU, and 2) a CPU procedure of pinpointing the final
position of k. The other (type2 procedures in Fig. 4) contains
procedures beginning at the root segment (which completes a
level) and ending with one of the segments at the last level.
These procedures are all conducted on the GPU. To sum up,
a G-Learned Index structure is made up of these two types of
procedures, as well as the two parts discussed in heterogeneous
structure preparation.

In the second step, we investigate the effect of varying ε on
type1 and type2 procedures. In the case of type1 procedures, we
first consider the factors of space occupancy. A large ε can reduce
the number of segments at the bottom level, saving load costs.
Furthermore, fewer segments can be stored in the limited GPU
shared memory, resulting in more efficient data accesses and
thus better time performance. In the case of type2 procedures,
we focus on the factors of time efficacy. A small ε is preferred
because a smaller ε leads to a smaller positioning range, resulting
in fewer operation discrepancies and less waiting time. This
eventually leads to minimal branch divergence, which makes
the best of GPU efficiency. Based on the previous discussions,
we find that the two procedures have opposing preferences for
ε. Therefore, we design adaptive auto-fitting for two separate εs
corresponding to the two types of procedures. We define ε1 as
the ε used for generating the last level of segments from array A,
and define ε2 as the ε for internally building segments recursively
from the bottom level up to the root segment. Theoretically, we
prefer a large ε1 and a small ε2 (in fact, ε2 = 4 yields a competent
result). Further tuning and investigation of ε1 are explored in
Section VI.

Parallel PLA generation: We use the PLA model [29] to
generate the segments that cover the array A. Now, we explore
the possibilities for building the segments in parallel.

We apply an O(n) greedy algorithm in PLA for construct-
ing the ε-approximate segments for A, where ε is given as a
parameter. First, we create a Cartesian plane containing points
(ki, rank(ki)) for all ki in array A. Second, starting from the
leftmost point to the rest of points on the right in order, a convex
hull is maintained for a set of points until the height of a rectangle
enclosing the convex hull exceeds 2ε. Then, we obtain a segment
with corresponding slope, intercept, and key (key denotes the
value of the leftmost point, which is k1 here) for the points in
the set. This process is repeated until all segments are created.
We hereby describe our observation by first giving the following
definition.

Definition 1: Let P be the point set {(ki, rank(ki))} sorted
according to their x-coordinates. A segment generation problem
(SGP) takes the sorted points in P and an initial status (st, le) as
inputs. The le clarifies the covering range of the current segment.
Namely, it starts at the leth point, and st denotes the next point to
process. Accordingly, the SGP (A, st, le) outputs the minimum
number of segments needed in PLA-model for covering the
points starting from the stth with a current segment status le.

Obviously, constructing the PLA-model on A can be viewed
as solving the SGP(P, 1, 1), where P = {(ki, rank(ki))} for all
ki inA, and a segment starts from and covers only the first point.

Lemma 1: Satisfying the optimization principle and Markov
property, we design an O(n3) dynamic programming (DP)
strategy by defining dpi,j as follows. Given a SGP(P, 1, 1),
a minimum of dpi,j segments is needed to cover the first i
points, with the current segment starting from the point whose
rank = j. All dp∗,∗ are initialized to ∞ except dpst,le = 1. We
also maintain a fi = min{dpi,∗} for each i. The algorithm runs
by following dpi,j = dpi−1,j if the segment starting from the
point j can be extended to i. Otherwise, dpi,j = min{fk + 1}
with k < i. In this case, the (k + 1)th point to the ith point must
satisfy the condition to form a segment, because we are forming
a new segment. Note that fn represents the final result.

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 02,2024 at 01:07:20 UTC from IEEE Xplore. Restrictions apply.

956 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 6, JUNE 2024

Both the greedy algorithm and the above DP strategy [34],
[36] achieve the same optimal number of segments. We consider
the problem from the DP strategy.

We focus on the matrix C1 where ci,j = dpi,j for
SGP1(P, st, le). We consider the corresponding matrix for
SGP2(P, st, le2) with le2 > le. First, we obtain a copy of C1

for C2. Then, we set dpst,le2 to 1 and update C2. Now, the dp
matrix C2 for SGP2 is going to, in a sense, obtain results no
worse than C1. The copy operation is reasonable because the
same state transition routes hold for two matrices. At this time,
a looser initial status of dpst,le2 = 1 is possibly able to bring
a better result in fn. This finding assists to bring the following
theorem.

Theorem 1: Let P be divided into ω + 1 sections, each
running PLA-model in parallel before the results are merged
together to complete the segment generation (ω ≥ 1). This adds
at most ω segments on top of the segments needed when we
perform the PLA-model on the whole P .

Proof: Consider situations whereω = 1 and it is easy to apply
the same procedure to prove forω > 1. If the split happens where
it should be, no extra segments are encountered. In the other
case, when performing PLA-model, suppose we are now at the
(cur − 1)th point with a current segment starting from the loth
point. However, we are unable to extend the segment to the curth
point due to a split occurring between the (cur − 1)th and curth
points. The post-split situation fits into an SGP1, where st =
cur and le = cur. Instead, we regard the original construction
process, in the absence of a split, as an SGP2(cur, lo). We obtain
an additional ω = 1 segment by deliberately disconnecting the
current segment in the parallel PLA-model, regarding it as an
extra one compared to the original PLA-model. In this way, we
are turning an SGP2 into SGP1. Since SGP1 achieves results no
worse than SGP2, we prove the theorem that at most an extra of
ω = 1 segment is created by the parallel PLA-model. �

Experimental results have shown that parallel computing
significantly reduces the construction time of the PLA model,
reducing it from a few seconds to less than one second. How-
ever, we cannot allocate a large number of threads to PLA
model execution. For example, if the PLA model generates 50
“segments” from a dataset of one million keys, using 10,000
threads for construction can result in an additional ten thousand
“segments”, consequently leading to a significant degradation
in query performance.

B. Query Execution

In this part, we solve the index problem in a batch search
context. We use batch granularity because we focus on bulk
queries, which can benefit from thousands of GPU cores to
index, resulting in massive acceleration.

General design: The parallel query operations work as fol-
lows. First, following the heterogeneous design, segment levels
are built based on array A and loaded to the GPU device.
Second, the queries are initially transferred from the CPU to the
GPU. During indexing, each GPU thread independently retrieves
individual queries according to the query ID and performs the
required task in parallel. Third, a predicted position is returned

Fig. 5. Lookahead strategy selection module. A query sample is selected and
follows completeQuery and conciseQuery.

from GPU for each query and the final position is pinpointed on
the CPU.

Detailed design: Query operations for a single task are per-
formed recursively in GPU from the root segment to the bottom
level in G-Learned Index. At each level, a thread uses a referring
segment passed down from the upper level to estimate the
segment in the next level. Then, a search in a range size of 2ε2 is
performed to find the right-most segment whose key remains no
larger than k. Given that the result position in the range of each
thread can differ from one another, causing branch divergence,
this operation leads to long time latency. A larger ε2 means more
branches. Considering the large number of queries executing
in parallel, we select an ε2 that is small enough (ε2 = 4) to
compensate the overhead caused by divergent data accesses.

To further improve performance, we design a lookahead
strategy selection as shown in Fig. 5. We find that for specific
cases, such as segments with only three levels, removing the
upper levels and conducting direct traversal check search on
the bottom level can produce better query time results. This is
because we need fewer memory transactions. For this reason,
we build the index and use an auto-tuning lookahead strategy
selection process. The process of selection is as follows. First,
we select a sample query at random for the test query. Second,
we track the time spent on completeQuery, namely indexing
this sample query on all levels of segments. Third, we time the
conciseQuery, i.e., conducting direct comparisons on each key in
the last level to find the right-most one smaller than or equivalent
to k. Finally, we compare the time spent in the second and third
steps and select a more efficient strategy.

Example: In Fig. 2, we set ε1 and ε2 to 1. The upper three
levels of segments are generated and placed on the GPU, and
the array A stays on CPU. Before processing batch queries, we
initially pick up the first batch as a sample query set. Assume
the batch size is 212. Then, we launch 212 threads for the
sample query set where each thread solves one query. We next
launch completeQuery and conciseQuery in turn as shown in
Fig. 5. Suppose there is a thread assigned to index x = 58.
For completeQuery, the thread follows the four procedures as
discussed in the example of the PGM-index in Section II-A, and
determines the accurate position in the last level of segments
denoted by 51. For conciseQuery, the only procedure is that the
thread directly conducts comparison against keys on the last level
of segments and finds that segment. Then, using the segment

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 02,2024 at 01:07:20 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: G-LEARNED INDEX: ENABLING EFFICIENT LEARNED INDEX ON GPU 957

Algorithm 1: Query Execution.
1: function completeQuery(A,n, ε1, ε2, levels, k)
2: pos = fr(k), where r = levels[0][0]
3: for i = 1 to SIZE(levels) − 1 do
4: lo = max{pos− ε2, 0}
5: hi = min{pos+ ε2,SIZE(levels[i])− 1}
6: s = the rightmost segment s′ in levels[i][lo, hi]

such that s′.key ≤ k
7: t = the segment right to s
8: pos = �min{fs(k), ft(t.key)}�
9: lo = max{pos− ε1, 0}

10: hi = min{pos+ ε1, n− 1}
11: return search for k in A[lo, hi]� Processed on CPU
12:
13: function conciseQuery(A,n, ε1, ε2, levels, k)
14: r = SIZE(levels)− 1
15: s = the rightmost segment s′ in levels[r] such that

s′.key ≤ k
16: lo = max{pos− ε1, 0}
17: hi = min{pos+ ε1, n− 1}
18: return search for k in A[lo, hi]� Processed on CPU
19:
20: function Query(A,n, ε1, ε2, levels, k)
21: load levels to GPUs
22: p = arg maxp∈P p(k), where

P = {completeQuery, conciseQuery}
23: return p(k) �Each thread assigned for a query task

denoted by 51, the thread returns 12 to CPU as the estimated
position ofx inA. The processing times of t1 and t2 are recorded
for completeQuery and conciseQuery, respectively. In this case
t1 is larger than t2, so G-Learned Index chooses conciseQuery
as the query strategy. G-Learned Index then executes batch
queries using conciseQuery. GPU processes queries in a batch
and returns the estimated positions to CPU. Collecting all the
212 estimated positions, the CPU processor then conducts binary
searches. For the query x = 58 for instance, CPU searches
among A[12− ε, 12 + ε] to determine the final position of x
in A.

Algorithm: We show the pseudocode of the query execution
of G-Learned Index in Algorithm 1, which has four major
inputs: 1) pre-trained parameters of ε1 and ε2 in the construction
phase, which can achieve high query performance, 2) levels
produced by PGM-index, 3) array A containing n keys, and
4) bulk query k. The workflow is as follows. First, levels are
transferred to GPUs (Line 21),. Second, we then conduct the
lookahead strategy selection in Line 22, and then apply k to that
choice. Third, we do queries on GPU where type1 procedures
are performed (Lines 2-10 and Lines 14-17). Finally, type2
procedures are executed on CPUs (Lines 11 and 18).

Theoretical analysis: Given an array consisting an ordered se-
quence of ki(i = 0, . . ., n− 1), the PLA-model in PGM-index
is capable of determining a minimum number mopt of segments
for the original array (denoted asA), wheremopt ≤ n/(2ε1). For

convenience, we use m instead of mopt, and draw the following
theorem.

Theorem 2: G-Learned Index with parameters ε1 and ε2
indexes the array A in Θ(n+m) space and answers queries
in amortized O((log ε1)/ω1 + log ε2(logc m)/ω2) time and
Θ(ε1/B +m/(ω2B)) I/Os with O(ε2 logc m) memory trans-
actions on GPUs. In the context of the above claim, c ≥ 2ε2 is
the fan-out achieved between the neighboring levels, ω1 and ω2

denote the granularity on CPU and GPU, respectively, and B is
the block size in the external-memory model.

Proof: A factor of c, which is more than 2ε2, represents the re-
duction in the number of segments of the lower level of segments
over the upper. Consequently, a total number L = O(logcm)

of levels are determined within
∑L

l=0 m/cl = Θ(m) space re-
quired in GPUs. For a query task, amortized execution time is
bounded by L binary searches with L− 1 on GPU and 1 search
on CPU. Specifically, L− 1 binary searches are conducted on
GPU over the L− 1 intervals with the size of at most 2ε2 + 1.
One search is performed on CPU over the range whose size
is at most 2ε1 + 1. As for the I/O costs, besides one binary
search on CPU required for each query, I/O complexity also
involves the extra expenses for loading segments from CPU and
the transmission of results of batch queries back from GPU. In
case of memory transactions on GPU, each thread is responsi-
ble for retrieving data that binary searches need in the device
memory. �

As a result, each query traverses an equivalent number of
levels, ensuring that the upper bound of latency for different
queries remains consistent.

C. Data Structures

The data structures of G-Learned Index include a hierarchical
self-maintained memory, positioning data structure, and prefix
trees for indexing strings.

Hierarchical memory arrangement: When performing query
operations, we assign one query task to a thread, and each
thread accesses the segments in G-Learned Index. Therefore,
data retrieval efficiency influences query performance on GPU,
ultimately affecting total time cost. Fortunately, we can make full
use of the GPU memory hierarchy to build our index structure.
Constant memory located on GPUs can be accessed by all
threads on the device and has a limited space of 4 KB, whereas
shared memory is a programmable cache on individual SMs and
has a size of 64 KB of our platform. Our memory is managed
by first loading segment levels to GPU global memory. We then
let each block in an SM occupies a copy of the structure in the
shared memory if the structure does not exceed the capacity of
the shared memory. This takes advantage of shared memory’s
faster access speed compared to global memory by retrieving
data directly from the shared memory for each thread. Another
suboptimal choice is to use constant memory for storage pool,
which can provide moderate data access speedup. The reason is
that constant memory resides on the same chip as global memory,
and thus fails to produce the outstanding performance of shared
memory.

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 02,2024 at 01:07:20 UTC from IEEE Xplore. Restrictions apply.

958 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 6, JUNE 2024

Data structure of positioning within the ε range: A search
operation within an interval for each segment level on GPU
whose size is at most 2ε (2ε2 specifically) is the key step
for query execution on a single thread. This is achieved by a
binary search in our design. The binary search outperforms a
traversal search because it reduces the number of comparisons
from 2ε at worst to a fixed log(2ε). A fixed operation pattern
means the avoidance of branch divergence between threads.
Although with probability p = log(2ε)/(2ε), a traversal search
behaves better than binary search (approximated to 1/2 when
ε is small), this value is diminished by a SIMD pattern of
w threads working on a batch. Specifically, the probability is
reduced to pw = (log(2ε)/(2ε))w because the processing of a
batch finishes only when the last thread in that batch completes
its job. For example, assume the concurrent queries be grouped
inm = 105 SIMD batches. Following Chernoff bound, then, the
probability that 100 out of 105 SIMD batches can obtain better
performance on traversal search is smaller than 2e−m/(3∗106pw),
i.e., 2e−1000 with w = 16, ε = 4, and m = 105.

Indexing strings: Indexing string is commonly used by many
databases [6], [29]. However, the existing PGM-index and many
GPU-based indexes focus on only indexing numerical values [7],
[18], [29]. Extending the model for strings introduces plenty
of difficulties. The primary concern is how to convert strings
to features of our model, a process known as tokenization.
Fortunately, studies [6], [50] on modeling strings have been able
to facilitate our practice. Overall, we adopt the advantage of a
prefix tree formulated on the dataset dictionary. In an efficient
and expressive solution, we represent a string as a feature key
u.key ∈ R, where u ∈ T and T is the prefix tree generated
on the given string dataset. We then follow the same efficient
heterogeneous modeling as we perform for numerical values.
The difference is that the input is the feature key representation
of a string.

D. Updates in G-Learned Index

In this section, we consider random updates, including inser-
tions and deletions, in G-Learned Index. For insert, for example,
it is more difficult to develop compared to traditional indexes.
Specifically, we adopt the logarithmic method for inserts at
arbitrary positions in the original array [29]. That is to say, we
maintain log(n) containers S0, S1, . . ., Sk(k = log(n)) at any
time having volumes of 20, 21, . . ., 2k elements, respectively. In
each container, we build a G-Learned Index. When an element
is inserted, we first attempt to add it to S0. If the added element
makes the total number of elements exceed the volume of the
container, neighbor containers are merged in a cascade way.
For example, assume Si is the first empty container. After
inserting the key x, we build a new G-Learned Index over the
merged container Si = S0 ∪ . . . ∪ Si−1 ∪ {x}. Overall, we pay
O(log n) amortized time per insertion. To delete a key, we add
a tombstone value associated with the key x.

When indexing batch queries, we allocate log(n) threads for
one query and let the threads work simultaneously. There are
two levels of parallelism. To index the key x, a group of log(n)
threads work in parallel, with thread i indexingx inSi, where i =

Fig. 6. Example of range query of G-Learned Index.

0, . . ., log(n). At the same time, different thread groups work in
parallel to index different keys.

E. Multidimensional Index

In this part, we discuss our PGM-index extension, which
enables it to index spatial objects and process range queries
on GPUs. Overall, we expect to learn the distribution of objects
scattered in two-dimensional space, which is one of the key
elements in a learned index. For one-dimensional situations,
reals are ordered intrinsically, so we can learn the CDF function
of the keys, whereas this case is not applicable to a spatial
context. This makes learning data in a spatial context difficult.
One way is to apply a conversion for a set of keys mapped from
two-dimensional space to one-dimensional space. Since real
numbers are fundamentally ordered, this dimension reduction
can be obtained by algorithmically assigning orders to points in
high-dimensional spaces. In our case, we use a Z-order strat-
egy to convert two-dimensional points to one-dimensional Z-
addresses [51] to facilitate data regularity learning. The follow-
ing property of Z-order is very useful. Given a search range in the
Cartesian plane, which is a rectangle framed by the bottom-left
and top-right corner points, Z-order maintains a monotonicity
that all the objects lying in the rectangle are guaranteed to be
located within a one-dimensional Z-address range. This range is
enclosed by the Z-addresses derived from the two spatial corner
points.

General design: G-Learned Index range query works as fol-
lows. First, all objects in the spatial map are stored in order in
a new array after dimension reduction. Second, we build our
heterogeneous model based on the new sorted array. Third, a
search range is enclosed by the two bottom-left and top-right
corner points of a rectangle. After this, the traversal range is
encircled by the corner points that have been transformed to
Z-address representations and indexed by GPU query execution.
Finally, we traverse the objects in that range to extract those
objects that are also contained in the originally given rectangle.
The monotonicity of Z-order ensures that the targeted objects in
the spatial map together form a subset of the one-dimensional
traversal range.

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 02,2024 at 01:07:20 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: G-LEARNED INDEX: ENABLING EFFICIENT LEARNED INDEX ON GPU 959

Algorithm 2: Range Query for Multidimensional Index.
1: function rangeQuery(Map, n, ε1, ε2, p1, p2)
2: A = an empty dynamic array
3: for i = 0 to SIZE(Map) - 1 do
4: A[i] = Z-address(Map[i])
5: conduct in-place sort of A according to key value
6: levels = BUILD-PGM-INDEX(A,n, ε)
7: st = Query(A,n, ε1, ε2, levels, p1)
8: ed = Query(A,n, ε1, ε2, levels, p2)
9: result = an empty dynamic array; count = 0

10: for i = st to ed do
11: if checkRegion(p1, p2, A[i]) then
12: result[count] = A[i]; count = count+ 1
13: return result

Example: We show an example of range query in Fig. 6. In the
dataset {(0, 0), (1, 2), (2, 1), (3, 6), (6, 6)}, we perform range
query to index objects within the range (1, 2) and (3, 6). We
first project each point to its Z-address representation, which
is indicated in every grid for each individual point, so that a
Z-address {0, 6, 9, 30, 60} of respective points in the dataset
can be occupied and stored in array A. We then build our
G-Learned Index based on A, and with ε = 0, we develop a
function mapping the original keys to their positions in A as
f . We search for the keys in the range (1, 2) and (3, 6) by first
obtaining their Z-addresses, which are 6 and 30, respectively, and
then determining the starting position (f(6) = 1) and ending
position (f(30) = 3) of the traversal range in A. Finally, we
traverse the keys in that range in A to extract all points with
two-dimensional positions satisfying the range query of (1, 2)
and (3, 6). This is equivalent to {6, 30} in Z-address represen-
tation and {(1, 2), (3, 6)} in the spacial map.

Detailed algorithm: The pseudocode is shown in Algorithm 2.
Initial input data of spacial objects are stored in Map and a
range query is indicated by p1 and p2 as two corners. First,
representation transformation is applied in Line 4, resulting in
a new array A for sorting the data and learning the distribution,
respectively (see Lines 5 and 6). We then turn to the parallel
query execution of G-Learned Index to index the positions of
p1and p2 in A by Lines 7 and 8. Next, we extract all the answer
objects by traversing the objects between A[st] and A[ed] and
checking whether they are situated in the original rectangle in
Map. Note that it is possible for objects to reside in the range
between A[st] and A[ed] but not to appear in the rectangle.

Theoretical analysis: We next deploy analysis in point query
and prove bounds on the time and space complexities of multi-
dimensional index.

Theorem 3: AssumeA is an ordered array ofn keys converted
from objects in two-dimensional space, where each dimension
is drawn from universe U and ε > 1 is a fixed parameter. In the
transformation stage, Θ(n) time and Θ(n/B) I/Os are required
where B is the block size transferred between memory levels
in external-memory model. The stage concerning PGM-index
construction consumes Θ(m) in space and O(n) in time, where
m denotes the minimum number of ε-approximate segments.

The multidimensional index with parameter ε indexes a range
between p1 and p2 in the array A in an extra O(K) time in
addition to point query, where K is the number of objects
satisfying the query range, with a minimum of extra Θ(K/B)
I/Os required.

Proof: Space reduction can be efficiently conducted because
of continuous access pattern. The query time O(n) is reported
because a factor of “2 log w” for Z-address transformation is
dismissed as a constant factor, where w refers to the range of
the key universe U . We observe a continuous access pattern of
traversal check in the range between A[st] and A[ed], so that the
index time complexity and I/O costs are bounded assuming st
and ed are evenly distributed in the range of [0, n− 1]. �

F. Implementation

We integrate G-Learned Index and PGM-index [29] imple-
mentations together, to help users use the learned index in a
variety of heterogeneous application scenarios. The G-Learned
Index consists of two major parts. 1) a CPU-located part handling
data input and work assignments on the CPU, and 2) a GPU-
situated working kernel mainly responsible for acceleration. G-
Learned Index is written in C++ and CUDA, while OpenMP has
also been used to facilitate our development. First, the queries
are transferred from the CPU side to the GPU side according to
the batch size through the CUDA memory copy API. Second,
after each thread retrieves the query it is responsible for, the
kernel initiates query execution to complete indexing on the
GPU side and subsequently transfers the results back to the CPU.
Third, the CPU processes the results with minimal overhead and
presents the final index to the user. With a user-friendly interface,
it is easily applicable to databases in both one-dimensional and
spatial contexts.

VI. EVALUATION

A. Experimental Setup

Methodology: We compare G-Learned Index to four methods.
The first method is “ALEX” [33], the most recent updatable
Recursive Model Index (RMI). The second method is the PGM-
index [29], which is the state-of-the-art learned index denoted as
“PGM”. However, we find that the original PGM is a sequential
version that uses only one thread on CPU. For fair comparison,
we use OpenMP to develop a parallel PGM-index version that
can take advantage of CPU’s parallelism. Accordingly, the third
method is a parallel version of the PGM-index, denoted as “PGM
(parallel)”. The fourth method is the state-of-the-art GPU-based
B-Tree [7], denoted as “GpuBTree”. Our GPU-based learned
index is denoted as “G-Learned Index”. We synchronize the
issued CUDA API calls before stopping the timer.

Datasets: We refer to SOSD [52] for evaluation datasets.
SOSD is a recent proposal on benchmarking learned index,
which encompasses a wide range of datasets. In detail, we
use eight datasets. Four datasets come from the real world,
including Books that contains popularity data of 200 M book
sales on Amazon [53], Facebook that represents 200 M sampled
IDs of users drawn from the Facebook dataset [52], Street that

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 02,2024 at 01:07:20 UTC from IEEE Xplore. Restrictions apply.

960 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 6, JUNE 2024

Fig. 7. Throughput of different methods.

consists of 800 M location information out of OpenStreetMap
presented in Google S2 CellIds [54], and a string dataset Dict
that consists of 341 K English words from a dictionary [15].
Four synthetic datasets of 0.1 M, 1 M, 10 M, and 100 M
are generated randomly, denoted as “1e5”, “1e6”, “1e7”, and
“1e8”, respectively. “1e5” is generated according to the uniform
distribution in the interval [0, u), “1e6” to the normal distribution
with mean μ and standard deviation σ, “1e7” to the exponential
distribution with parameter λ, and “1e8” is randomly generated.
We set u = 232, μ = 216, σ = 210, and λ = 2−5. The randomly
generated datasets involve a high level of uncertainty and reveal
a wide range of difficult-to-identify data patterns. As a result, we
believe that these datasets present challenges for learned indexes
in grasping data schemes.

Platform: Our experiments are conducted on a platform
equipped with an Intel i9-9900 k CPU and an NVIDIA
GEFORCE RTX 2080 TI GPU. The CPU has 8 cores, each
of which can support 2 threads. The GPU has 4,352 cores of
Turing architecture with a computing capability of 7.5. The GPU
can achieve a maximum memory bandwidth of 616 GB/s, 0.4
tera floating-point operations per second (TFLOPS) on double-
precision, and 13 TFLOPS on single-precision.

B. Performance

We compare the performance of various methods in terms of
both throughput and latency. We include the PCIe data transfer
time between CPU and GPU for G-Learned Index. For each
dataset, we execute a different set of 222 key lookup queries.
Each query is assigned with a random key. A batch size of
4096 KB is used and ε is set to 128.

Throughput: We show the throughput of different methods in
Fig. 7, and have the following observations.

First, G-Learned Index achieves the highest throughput
among all methods. It can achieve an average of 1.2× 109

queries per second, which is 174× the performance of PGM-
index, and 107× the performance of its parallel version. Com-
pared to the state-of-the-art GPU-based B-Tree, G-Learned In-
dex still achieves an average speedup of 1.9×. We only have
the results of the four small datasets for GPU-based B-Tree, as
the other datasets resulted in errors due to illegal memory ac-
cesses. The learned index has a more compact learned structure
and more succinct representation (PGM-index can achieve 4×
speedups over the B-Tree with 1140× less space occupancy)

Fig. 8. Latency of different methods.

compared to the traditional B Tree. Therefore, G-Learned Index
can outperform GPU B-Tree with careful heterogeneous archi-
tecture optimization.

Second, we find that parallel technology proves highly ef-
fective in accelerating the learned index. The CPU platform
can accommodate up to eight cores, and the parallel version of
the PGM-index demonstrates an average 52% higher through-
put compared to the sequential version. GPUs provide much
more lightweight cores. With proper optimizations, including
coalesced access, minimization of branch divergence, and ef-
fective use of memory hierarchy, as discussed in Section V,
G-Learned Index can provide a further significant performance
improvement.

Third, we can see from Fig. 7 that the G-Learned Index
throughputs are comparable on different datasets. When G-
Learned Index processes a greater number of elements, its per-
formance stays stable (statistically from 0.4% to 9.6% reduction
at most). The reason is that a segment can carry large volumes of
information. This suggests promising scalability of G-Learned
Index. However, we observe that the parallel PGM-index and
GPU-based B-Tree suffer significant time efficacy loss when the
number of elements to maintain is increased (from 1e5 to 1e7).
The parallel PGM-index and GPU-based B-Tree, in particular,
see a reduction in throughput from 1e5 to 1e7 by 19% to 30%,
and 14% to 43%, respectively. This is because the functions
of the C++ STL library used in PGM-index are sensitive to
the original dataset size. Instead, for G-Learned Index, GPU
kernel operations are processed on segments, and ensure that
the growing size of datasets can lead to a sub-linear rise in the
number of segments, kernel operation time.1 As for GPU-based
B-Tree, throughput is hinged on the height of the B-Tree, mainly
influenced by the expanding size of the index structure linear in
the number of input keys.

Latency: We show the latency results of different methods
in Fig. 8. We define latency as the end-to-end time for a query
to complete from the beginning to the end. For methods using
parallel batching, a query ends when all queries in the same batch
finish. The batch size is 210. We have the following observations.

First, G-Learned Index exhibits an average latency of less than
0.04 ms. Although G-Learned Index targets high-throughput
scenarios, its latency is close to that of ALEX and PGM among

1A proven loose bound is log(N × 1/(2ε)), but empirically quantified inves-
tigation shows much better results. Our case here is a compelling justification.

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 02,2024 at 01:07:20 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: G-LEARNED INDEX: ENABLING EFFICIENT LEARNED INDEX ON GPU 961

most workloads. For dict dataset, G-Learned Index can provide
even shorter latency. This suggests that the batch query strategy
does not significantly affect the latency, even at batch granularity.

Second, we can see that the GPU parallelism can provide
much lower latency than the CPU parallel version. One reason
is that the GPU is equipped with GDDR6 memory, which has
much higher bandwidth and lower latency. Another reason is that
workloads are scheduled more evenly on different GPU SMs.

Third, G-Learned Index latencies are similar across datasets.
In fact, its reassuring latency on datasets of various sizes is
mainly due to the predictable and balanced performance of var-
ious queries on GPU kernels. The minimum branch divergence
is achieved by G-Learned Index. Consequently, only a minimal
amount of additional time is needed to wait for the last thread
in a warp to finish its job.

Currently, the CPU and the GPU are connected via PCIe.
When advanced connection is enabled, we can achieve higher
performance gains. The data transmission and computation can
also be pipelined. It is worth noting that the CPU running time
accounts for less than 10% of the total latency and is not sensitive
to the different choices of ε in experiments. Therefore, we choose
ε mainly based on GPU. For a different generation of GPU,
e.g., NVIDIA GEFORCE 3090, 128 is chosen based on the 1e7
dataset in experiments.

Applying G-Learned Index to other scenarios: As discussed
in Section III-B, G-Learned Index can be applied to many
applications. For the use case of parallel nested loop join [28],
assume we have two tables: the outer table R and the inner
table S. We add one million records to table R; match rate
is set to 100% and index rep is five. The index is built on S.
We then conduct experiments on both the CPU learned index
and G-Learned Index. With the help of G-Learned Index, the
parallel nested loop join with G-Learned Index achieves 101.2×
performance speedup over its original version, and also achieves
21.8× speedup compared to the CPU-learned-index version.
For the use case of pattern matching on dataset Street, we
have an 16.6× faster end-to-end total execution. For the use
case of feature store task on one million taxi rides in New
York City [49], suppose we need to select 70% of the records
as training set randomly; with concurrent batch indexing, the
end-to-end processing time speedup is 11.3×.

C. Space Savings

In this part, we investigate the space savings of G-Learned
Index by tracking the footprint of our implementation, which to
a large extent depends on the amount of space required to store
the bottom level of segments. We compare the size of G-Learned
Index with that of GPU-based B-Tree.

Overall, experiments show that given ε = 128, for the four
real-world datasets, G-Learned Index occupies 36 KB, 5.9 MB,
16 MB, and 0.23 KB, thus saving space by 4258×, 528×, 783×,
and 11333×, respectively. In addition, for the synthetic datasets,
G-Learned Index saves 4 orders of magnitudes space on average.
The reason is that segments of the index are compact structures
that take up space sub-linear in the number of keys in a dataset.

Fig. 9. Performance of G-Learned Index with various batch sizes.

To explore the influence of ε on the space savings, we vary
ε from 32 to 128, 512, and 2048 over the eight datasets. The
average space occupancy of G-Learned Index for different ε is
12 MB, 2.7 MB, 604 KB, and 108 KB, resulting in space savings
of 1130×, 1.4e4×, 1.5e5×, and 9.4e4×, respectively. The space
benefits increase along with ε. The reason is that the PLA model
generates segments dependent on choices of ε, which denotes
the tolerance of precision that is allowed when using a segment
to approximate the position of a key. Specifically, as ε increases,
fewer segments are needed resulting in greater space savings.

D. Design Tradeoffs

Batch size analysis: Next, our navigation is concerned with
the effect of different batch sizes, namely the number of queries
completed within a batch. Because a large number of queries
arrive at a close time, we organize these queries at batch granular-
ity. Combining queries into a batch aids in making full usage of
computing cores on GPU. To investigate the effect of batch size
on performance, we vary the batch size from 1 KB to 4096 KB,
and measure the throughput and latency of G-Learned Index.

We show the performance based on various batch sizes in
Fig. 9. We have the following observations. First, the throughput
increases as the batch size grows. When the batch size is less than
512 KB, we can see that the throughput grows steadily. Follow-
ing that, the growth of throughput slows down, indicating that
the utilization of parallel GPU resources is close to saturation,
and there is contention for memory access that arises at high
batch sizes. Second, the latency remains low until the batch
size reaches 512 KB. After that, the newly arrived batch cannot
be processed immediately, and the processing time increases.
Accordingly, there is a noticeable difference in latency after
512 KB. Third, we conclude that properly increasing the batch
size when resources are abundant can increase the throughput
without affecting the latency. We are also interested in deter-
mining the number of queries required to achieve acceleration
over CPU-based methods. G-Learned Index has been shown
to achieve higher throughput for datasets larger than 1e6 when
batch_size is set to 256 or higher. In cases where query batches
exhibit superior latency on CPUs, our system can leverage the
CPU parallel processing engine.

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 02,2024 at 01:07:20 UTC from IEEE Xplore. Restrictions apply.

962 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 6, JUNE 2024

Fig. 10. Influence of ε on throughput and latency.

Influence of different configurations: We report the influence
from different ε configurations on ten million keys in Fig. 10.
First, we can see that the throughput grows dramatically when
ε increases from 32 to 256. This is because a larger ε leads to
a significant decrease in the number of segments at the bottom
level, which saves a considerable amount of time during data
retrieval and query execution on conciseQuery. Although it takes
more time for binary search on GPU to find the real position
of a key, this time increase accounts for only a small portion
of the total time consumed. When ε is larger than 256, the
throughput does not increase significantly. The reason is that
further increases in ε have less of an impact even as the number
of segments decreases. Additionally, latencies behave in the
opposite direction to throughputs. The latency starts out high for
ε = 32, and gradually decreases until it reaches 256. This is due
to faster query execution when ε becomes larger. The choice of ε
also affects index size. Generally, the space occupancy decreases
as ε increases. If the space occupancy is small enough, the index
can reside in the shared memory to accelerate querying. For
the 1e5 dataset, we can always store the index in GPU shared
memory for ε ≥ 32. For the books dataset, however, ε ≥ 512 is
required for the index structure to reside in the shared memory.

Influence of memory hierarchy: Each GPU features a memory
hierarchy. We can take advantage of the shared memory because
the index structure on the GPU side can be shared and reused
across threads. The index can be fetched from global memory to
shared memory and all the threads in the CUDA block can use the
same index structure in the shared memory. We investigate the
memory hierarchy by explicitly assigning structures of segment
levels for the 1e6 dataset with a varying ε to specific memory
types. We measure the query time and show the performance
results in Table I. Experiments show that storing the index
structures in shared memory outperforms global memory by 5%
to 18%, and up to 7% over constant memory. The reason is that
shared memory, also known as programmer-controlled cache on
the GPU, can provide faster read and write bandwidths. Besides,
the pre-fetch from global memory to shared memory guarantees
a maximum degree of coalescing.

Index construction: As discussed in Section V-A, G-Learned
Index can be built on GPU in parallel. The index construction

TABLE I
QUERY TIME WITH REGARD TO DIFFERENT TYPES OF MEMORIES ON THE

GPU (us)

Fig. 11. Performance of random updates of different methods.

process on GPU of G-Learned Index is much faster than that on
CPU. To construct the 1e7 dataset, for example, the CPU parallel
version of PGM needs 592 ms while G-Learned Index needs only
118 ms. On average, G-Learned Index is 5.54× and 3.05× faster
than PGM (parallel) and ALEX, respectively. Moreover, we find
that the index construction of G-Learned Index on large datasets
exhibits higher benefits. For example, G-Learned Index achieves
8.35× (686 ms against over 5700 ms) speedup in construction
on the “1e8” dataset and 2.28× (2.24 ms over 5.12 ms) on the
“1e5” dataset over PGM.

E. Random Updates

To measure the performance of random updates in G-Learned
Index, we generate a dataset of 1e7 32 b integers from u(0, 232)
and simulate a dynamic scenario where 107 operations are
randomly generated. Operations of insertions, deletions, and
queries are executed in batches of 212. Among these batches,
we vary the proportion of update operations to explore the
performance of G-Learned Index in different situations. We
set ε to 128, and compare G-Learned Index to the dynamic
PGM-index, ALEX, and GPU B-Tree. We show the comparison
results in Fig. 11. The horizontal axis represents the different
proportions of update operations. Fig. 11 shows that G-Learned
Index outperforms PGM, ALEX, and GPU B-Tree by an average
of 32×, 11×, and 1.6× in terms of throughput, respectively.

F. Multidimensional Indexing

We have enabled the G-Learned Index in multidimensional
contexts as well. In this part, we evaluate G-Learned Index

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 02,2024 at 01:07:20 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: G-LEARNED INDEX: ENABLING EFFICIENT LEARNED INDEX ON GPU 963

Fig. 12. Performance of multidimensional indexing on R-Tree and G-Learned Index. Selectivity is defined as a ratio of the number of objects selected to the total
size of the dataset.

on range queries and compare it to R-Tree [55], GPU R-
Tree [56], CR-Tree [57], and COAX [58]. R-Tree is the tra-
ditional spatial index suitable for range queries. GPU R-Tree
is a multi-dimensional indexing R-Tree structure built on GPU
architecture, whereas CR-Tree is a cache-aware R-Tree. COAX
is a learned index for multidimensional data, which learns the
correlation between the attributes of the dataset rather than the
distribution of keys. We compare G-Learned Index with the R-
Tree based multi-dimensional index in terms of throughput and
latency. COAX is used for performance stability comparison.
To create a multidimensional setting, we randomly generate a
spatial dataset with 100,000 two-dimensional objects. We create
500 range queries at random. Each query is given a bottom-left
and top-right corner, and spatial keys within the range are
expected to be retrieved. To gain a comprehensive understanding
of the multidimensional performance of G-Learned Index, we
apply a selectivity parameter to generate range queries. This
selectivity is a fixed value that represents the ratio of the number
of objects chosen in a query to the total size of the dataset.

We report the performance of throughput and latency on
different selectivities in Fig. 12. First, G-Learned Index has
an average throughput of 17.7× 106 queries/s, which is 152×,
8×, 98×, and 16× greater than that of R-Tree, GPU R-Tree,
CR-Tree, and COAX, respectively. Second, G-Learned Index
has a low latency of 0.23 s, which is 159×, 90×, 103×, and
17× lower than that of the R-Tree, GPU R-Tree, CR-Tree,
and COAX. Third, we can see that the G-Learned Index’s
performance behavior is quite stable in terms of both through-
put and latency. This is because the time spent on G-Learned
Index does not increase significantly when selectivity increases.
Specifically, the major time consumption is incurred by indexing
the two corners, and the following asymptotic linear traversal
time of region check makes little difference. It can be seen that
COAX without tree structure is also stable, which verifies our
conclusion. In contrast, the query time of R-tree appears to be
dependent on selectivity, with longer search time as a result
of traversing a larger proportion of the R-tree. That is to say,
R-tree does not guarantee a worst-case time complexity, possibly
O(n log n) where n is the number of keys.

Fig. 13. Performance of different methods.

G. Additional Experiments

G-Learned Index with all data on GPU memory: Following
the same setting in Section VI-B, we show the throughput of
G-Learned Index for the dataset 1e7 where all the index structure
and data are stored on GPU. G-Learned Index can achieve 396×
speedups compared to the PGM-index (and 185× speedups
against its CPU parallel version), and 6.12× speedups against
GPU B-Tree.

Performance without data transfers between CPU and GPU:
Fig. 13 illustrates the throughput and latency of G-Learned
Index when excluding data transfers between the CPU and GPU.
Fig. 13 shows that G-Learned Index can achieve 3050× higher
throughput compared to the PGM-index (and 1880× higher than
its CPU parallel version). The results are useful, especially for
GPU-CPU integrated devices, where the CPU and GPU share
the same memory [59].

Latency breakdown of CPU and GPU: We show the break-
down of the whole latency between the GPU side and the CPU
side in Table II. Through Table II, we can see that the GPU side
takes the majority of jobs and costs over 90% processing time.
For example, the 222 queries can be broken down to a detailed
level for batch size = 1 KB. In detail, the upper layers take
around 12 us (over 90% of the total execution time) for the 1e7
dataset, while the last layer takes less than 2 us.

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 02,2024 at 01:07:20 UTC from IEEE Xplore. Restrictions apply.

964 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 6, JUNE 2024

TABLE II
LATENCY BREAKDOWN OF CPU AND GPU FOR 1E7

VII. RELATED WORK AND DISCUSSION

This section discusses related work of learned indexes and
traditional indexes on GPU.

Learned indexes: The development, refinement, and appli-
cation of learned indexes have been broadly studied in recent
years [6], [13], [60], [61], [62], [63]. Kraska et al. [6] proposed
the learned index, claiming that indexes are fundamentally
trainable models to output the position of the input key in a
sorted array. Many researchers have focused on improving the
performance of learned indexes [14], [33], [51], [64], [65], [66].
Li et al. [32] and Qu et al. [16] constructed variations and
extensions of RMI by excluding keys that caused large errors
in the array, which are typically called outliers, storing them
in a B-Tree and constructing RMI on the resting non-outliers.
ALEX [33], [67], [68] focused on fitting a linear learned index
into a tree design. In AIDEL [64], RMI is further improved
with guaranteed latency. Xun et al. [69] implemented a simple
index on GPU; however, their work neither supports index
construction and updates, nor does it support range query for
multidimensional index. The application of learned indexes is
another central research topic [15], [70], [71], [72], [73]. By
incorporating learned indexes to the hash table, learned hash is
generated [6], [72]. Another category of learned index appli-
cation is the learned bloom filter. Kraska et al. [6] and Macke
et al. [74] used a binary classifier to replace the Bloom filter, and
Mitzenmacher [60] provided a detailed analysis of the model
size. Dai et al. [70] modified the learned Bloom filter using
a predicted probability score. Other researchers used learned
indexes to solve the heavy hitter problem. Hsu et al. [71] applied
the learned indexes to the frequency estimation problems, and
Zhang et al. [75] used machine learning to acquire important
input patterns and proposed the Learned Augmented Sketch.

Traditional indexes on GPU: There is a large body of lit-
erature that addresses index structures on GPU. Many efforts
have been made to improve both the traditional B-Tree and
its variant, the B+-Tree [7], [8], [9], [76]. Awad et al. [7]
and Kaczmarski [8] optimized the performance of B-Tree and
B+-Tree on GPU. When queries arrive, the GPU B-Tree family
uses different searching methods – completing a search query
in a single thread [8], or locating a key by fetching all keys in
a page in parallel to leverage GPU bandwidth [7]. G-Learned
Index has different designs. First, G-Learned Index features a
different model structure from GPU B-Tree. While G-Learned
Index uses machine learning models as sub-components in the
index to form a Directed Acyclic Graph (DAG), GPU B-Tree
features nodes constructed as a tree. Second, G-Learned Index
delves into the intricate relations of the influences of different

parameters and tunes the model to achieve optimal performance.
Specifically, we have parameters like ε to balance the model
levels and additional search overhead. Third, G-Learned Index
encapsulates further optimizations that exploit the collabora-
tion between threads, such as the lookahead strategy. Other
studies have been concerned with GPU performance gains us-
ing different index structures [18], [77], [78], [78], [79]. Liu
et al. [80] proposed a lock-free parallel solution for the T-Tree,
and GPU LSM [18] is implemented with a dynamic dictionary
data structure for GPU using a set of sorted arrays. Lopresti
et al. [77] developed a GPU permutation index for similarity
search on databases with different data distribution, and Zhou
et al. [81] succeeded in supporting batch queries. Attempts have
also been made on GPUs to parallelize multidimensional index
structures [17], [82], [83]. For example, G-Tree is a GPU-aware
parallel R-Tree indexing method proposed by Kim et al. [83]. It
combines the efficiency of the R-tree with the massive parallel
processing power of the GPU. GPU R-Tree, implemented by
You et al. [17], offers consistent and stable performance in
high-dimensional space.

Discussion: First, one limitation of this work is its focus
on PGM-index, while there may be acceleration opportunities
in other learned index structures for GPUs, which we leave
for future exploration. Second, our current system, G-Learned
Index, is designed for the CPU-GPU heterogeneous platform,
but there may be potential opportunities on other devices such
as TPU. This suggests that additional architectural designs will
be necessary to account for the properties of TPUs. Third, the
current CPU database stores data on the CPU end. When con-
sidering a point query, a performance model may be necessary
to maximize the benefits of G-Learned Index against the data
transfer cost between different devices.

VIII. CONCLUSION

This paper proposes an efficient GPU-based learned index to
enable efficient learned indexes on GPUs. This paper shows how
learned indexes have been materialized on GPUs, and discusses
the primary challenges in applying GPU in learned indexes. This
is addressed by efficient performance-guided bandwidth utiliza-
tion, optimizations of multi-thread organization, and memory
dependency removal of the upper layers following the hetero-
geneous model accompanied with pre-trained parametric selec-
tion and on-the-fly strategy adaptation. Moreover, we provide
a library to help users adopt our work in GPU-based data
management systems. G-Learned Index achieves an average of
174 × speedup over the state-of-the-art method (and 107 ×
of its parallel version). It is also worth noting that compared
to GPU-based B-Tree, G-Learned Index saves 4 × query time
and takes up two orders of magnitude less space occupancy.
These experiments show that using GPU in conjunction with
machine learning in the index of database systems has tremen-
dous promise.

REFERENCES

[1] “How much data is created every day?,” 2022. [Online]. Available: https:
//seedscientific.com/how-much-data-is-created-every-day/

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 02,2024 at 01:07:20 UTC from IEEE Xplore. Restrictions apply.

https://seedscientific.com/how-much-data-is-created-every-day/
https://seedscientific.com/how-much-data-is-created-every-day/

LIU et al.: G-LEARNED INDEX: ENABLING EFFICIENT LEARNED INDEX ON GPU 965

[2] J. Bulao, “How much data is created every day in 2022?,” 2022.
[Online]. Available: https://techjury.net/blog/how-much-data-is-created-
every-day/#gref

[3] G. Graefe, “B-tree indexes, interpolation search, and skew,” in Proc.
2nd Int. Workshop Data Manage, New York, NY, USA, 2006, pp. 5–es,
doi: 10.1145/1140402.1140409.

[4] W. Litwin, “Linear hashing: A new tool for file and table addressing,” in
Proc. 6th Int. Conf. Very Large Data Bases, 1980, pp. 212–223.

[5] K. Alexiou, D. Kossmann, and P.-R. Larson, “Adaptive range filters for
cold data: Avoiding trips to siberia,” in Proc. VLDB Endow., vol. 6, no. 14,
pp. 1714–1725, Sep. 2013.

[6] T. Kraska, A. Beutel, E. H. Chi, J. Dean, and N. Polyzotis, “The case for
learned index structures,” in Proc. Int. Conf. Manage. Data, New York,
NY, USA, 2018, pp. 489–504, doi: 10.1145/3183713.3196909.

[7] M. A. Awad, S. Ashkiani, R. Johnson, M. Farach-Colton, and J. D. Owens,
“Engineering a high-performance GPU B-tree,” in Proc. 24th Symp. Princ.
Pract. Parallel Program., New York, NY, USA, 2019, pp. 145–157,
doi: 10.1145/3293883.3295706.

[8] K. Kaczmarski, “B + -tree optimized for GPGPU,” in On the Move to
Meaningful Internet Systems: OTM, R. Meersman, H. Panetto, T. Dillon, S.
Rinderle-Ma, P. Dadam, X. Zhou, S. Pearson, A. Ferscha, S. Bergamaschi,
and I. F. Cruz, Eds., 2012, pp. 843–854.

[9] K. Kaczmarski, “Experimental b+-tree for gpu,” ADBIS, vol. 2, no. 11,
p. 122, 2011.

[10] G. Wang, Y. Lei, Z. Zhang, and C. Peng, “A communication efficient
ADMM-based distributed algorithm using two-dimensional torus group-
ing allreduce,” Data Sci. Eng., vol. 8, pp. 61–72, 2023.

[11] J. Wang, W. Pang, C. Weng, and A. Zhou, “D-cubicle: Boosting data
transfer dynamically for large-scale analytical queries in single-GPU
systems,” Front. Comput. Sci., vol. 7, 2023, Art. no. 174610.

[12] J. Liu et al., “Space-efficient TREC for enabling deep learning on micro-
controllers,” in Proc. 28th ACM Int. Conf. Architectural Support Program.
Lang. Operating Syst., 2023, pp. 644–659.

[13] A. Kipf et al., “RadixSpline: A single-pass learned index,” in Proc. 3rd
Int. Workshop Exploiting Artif. Intell. Techn. Data Manage., New York,
NY, USA, 2020, pp. 1–5, doi: 10.1145/3401071.3401659.

[14] J. Ding, V. Nathan, M. Alizadeh, and T. Kraska, “Tsunami: A learned
multi-dimensional index for correlated data and skewed workloads,” in
Proc. VLDB Endow., vol. 14, no. 2, pp. 74–86, 2020.

[15] A. Kristo, K. Vaidya, U. Çetintemel, S. Misra, and T. Kraska, “The
case for a learned sorting algorithm,” in Proc. ACM SIGMOD Int.
Conf. Manage. Data, New York, NY, USA, 2020, pp. 1001–1016,
doi: 10.1145/3318464.3389752.

[16] W. Qu, X. Wang, J. Li, and X. Li, “Hybrid indexes by exploring traditional
b-tree and linear regression,” in Proc. Web Inf. Syst. Appl., W. Ni, X. Wang,
W. Song, and Y. Li, Eds., Berlin, Germany: Springer, 2019, pp. 601–613.

[17] S. You, J. Zhang, and L. Gruenwald, “Parallel spatial query processing
on GPUs using r-trees,” in Proc. 2nd ACM SIGSPATIAL Int. Workshop
Analytics Big Geospatial Data, New York, NY, USA, 2013, pp. 23–31,
doi: 10.1145/2534921.2534949.

[18] S. Ashkiani, S. Li, M. Farach-Colton, N. Amenta, and J. D. Owens, “GPU
LSM: A dynamic dictionary data structure for the GPU,” in Proc. IEEE
Int. Parallel Distrib. Process. Symp., 2018, pp. 430–440.

[19] Design Guide, “CUDA C Program. Guide,” NVIDIA, p. 31, Jul. 2013.
[20] Part Guide, “Intel 64 IA-32 architectures software developer manuals,”

Syst. Program. Guide, vol. 3B, no. 2.11 pp. 1 64, 2011.
[21] C. Root and T. Mostak, “MapD: A GPU-powered big data analytics and

visualization platform,” in Proc. ACM SIGGRAPH Talks, New York, NY,
USA, 2016, pp. 1–2.

[22] Y. Lu, X. Yu, L. Cao, and S. Madden, “Epoch-based commit and replication
in distributed OLTP databases,” in Proc. VLDB Endowment, vol. 14, no. 5,
pp. 743–756, 2021.

[23] K. Zeng, S. Agarwal, and I. Stoica, “iOLAP: Managing uncertainty for
efficient incremental OLAP,” in Proc. Int. Conf. Manage. Data, 2016,
pp. 1347–1361.

[24] A. Raza, P. Chrysogelos, A. C. Anadiotis, and A. Ailamaki, “Adaptive htap
through elastic resource scheduling,” in Proc. ACM SIGMOD Int. Conf.
Manage. Data, 2020, pp. 2043–2054.

[25] D. Makreshanski, J. Giceva, C. Barthels, and G. Alonso, “Batchdb: Ef-
ficient isolated execution of hybrid oltp+ olap workloads for interactive
applications,” in Proc. ACM Int. Conf. Manage. Data, 2017, pp. 37–50.

[26] R. A. Hughes, A. E. Miklos, and A. D. Ellington, “Gene synthesis: Meth-
ods and applications,” in Methods in Enzymology, vol. 498. Amsterdam,
Netherlands: Elsevier, 2011, pp. 277–309.

[27] J. Tian, K. Ma, and I. Saaem, “Advancing high-throughput gene synthesis
technology,” Mol. Biosyst., vol. 5, no. 7, pp. 714–722, 2009.

[28] A. Nguyen, M. Edahiro, and S. Kato, “Gpu-accelerated voltdb: A case
for indexed nested loop join,” in Proc. Int. Conf. High Perform. Comput.
Simul., 2018, pp. 204–212.

[29] P. Ferragina and G. Vinciguerra, “The PGM-index: A fully-dynamic
compressed learned index with provable worst-case bounds,” in
Proc. VLDB Endow., vol. 13, no. 8, pp. 1162–1175, Apr. 2020,
doi: 10.14778/3389133.3389135.

[30] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym, “NVIDIA tesla: A
unified graphics and computing architecture,” IEEE Micro, vol. 28, no. 2,
pp. 39–55, Mar./Apr. 2008.

[31] P. Li, Y. Hua, J. Jia, and P. Zuo, “FINEdex: A fine-grained
learned index scheme for scalable and concurrent memory systems,”
in Proc. VLDB Endow., vol. 15, no. 2, pp. 321–334, Oct. 2021,
doi: 10.14778/3489496.3489512.

[32] X. Li, J. Li, and X. Wang, “ASLM: Adaptive single layer model for learned
index,” in Database Systems for Advanced Applications, G. Li, J. Yang, J.
Gama, J. Natwichai, and Y. Tong, Eds., Berlin, Germany: Springer, 2019,
pp. 80–95.

[33] J. Ding et al., “ALEX: An updatable adaptive learned index,” in Proc.
ACM SIGMOD Int. Conf. Manage. Data, New York, NY, USA, 2020,
pp. 969–984, doi: 10.1145/3318464.3389711.

[34] A. Galakatos, M. Markovitch, C. Binnig, R. Fonseca, and T.
Kraska, “Fiting-tree: A data-aware index structure,” in Proc. Int.
Conf. Manage. Data, New York, NY, USA, 2019, pp. 1189–1206,
doi: 10.1145/3299869.3319860.

[35] A. Galakatos, M. Markovitch, C. Binnig, R. Fonseca, and T.
Kraska, “Fiting-tree: A data-aware index structure,” in Proc. Int.
Conf. Manage. Data, New York, NY, USA, 2019, pp. 1189–1206,
doi: 10.1145/3299869.3319860.

[36] J. O’Rourke, “An on-line algorithm for fitting straight lines between data
ranges,” Commun. ACM, vol. 24, no. 9, pp. 574–578, Sep. 1981.

[37] E. Furst, M. Oskin, and B. Howe, “Profiling a GPU database implemen-
tation: A holistic view of GPU resource utilization on TPC-H queries,” in
Proc. 13th Int. Workshop Data Manage. New Hardware, 2017.

[38] F. Zhang, J. Zhai, X. Shen, O. Mutlu, and X. Du, “POCLib: A high-
performance framework for enabling near orthogonal processing on com-
pression,” IEEE Trans. Parallel Distrib. Syst., vol. 33, no. 2, pp. 459–475,
Feb. 2022.

[39] A. Redd, K. Khin, and A. Marini, “Fast ES-RNN: A GPU implementation
of the ES-RNN algorithm,” 2019, arXiv:1911.13014.

[40] B. G. Soos, A. Rak, J. Veres, and G. Cserey, “GPU powered CNN simulator
(SIMCNN) with graphical flow based programmability,” in Proc. Int.
Workshop Cellular Neural Netw. Their Appl., 2008, pp. 163–168.

[41] J. B. Kulkarni, A. Sawant, and V. S. Inamdar, “Database processing by
linear regression on GPU using CUDA,” in Proc. Int. Conf. Signal Process.
Commun. Comput. Netw. Technol., 2011, pp. 20–23.

[42] H. Xu, L. Zeng, X. Cai, and S. Li, “GPU-accelerated feature extraction
and multi-resolution visualization for complex 3D fluid field,” J. Comput.-
Aided Des. Comput. Graph., vol. 21, no. 7, pp. 893–899, 2009.

[43] B. He et al., “Relational joins on graphics processors,” in Proc. ACM
SIGMOD Int. Conf. Manage. Data, New York, NY, USA, 2008, p. 511–
524, doi: 10.1145/1376616.1376670.

[44] M. Najam, R. Rasool, H. Ahmad, U. Ashraf, and A. Malik, “Pattern
matching for dna sequencing data using multiple bloom filters,” Biomed.
Res. Int., vol. 2019, pp. 1–9, 2019.

[45] Q. Fan and Q. Wang, “Performance comparison of web servers with
different architectures: A case study using high concurrency workload,”
in Proc. IEEE 3rd Workshop Hot Topics Web Syst. Technol., 2015,
pp. 37–42.

[46] “Black friday figures,” 2022. [Online]. Available: https://black-friday.
global/

[47] “Feature store for ML,” 2022. [Online]. Available: https://www.
featurestore.org/

[48] L. Orr, A. Sanyal, X. Ling, K. Goel, and M. Leszczynski, “Manag-
ing ML pipelines: Feature stores and the coming wave of embedding
ecosystems,” in Proc. VLDB Endowment, vol. 14, no. 12, pp. 3178–3181,
2021.

[49] “A billion taxi rides in redshift,” 2021. [Online]. Available: https://tech.
marksblogg.com/billion-nyc-taxi-rides-redshift.html

[50] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms, 2nd ed. Cambridge, MA, USA: MIT Press, 2001.

[51] H. Wang, X. Fu, J. Xu, and H. Lu, “Learned index for spatial
queries,” in Proc. 20th IEEE Int. Conf. Mobile Data Manage., 2019,
pp. 569–574.

[52] A. Kipf et al., “SOSD: A benchmark for learned indexes,” 2019,
arXiv:1911.13014.

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 02,2024 at 01:07:20 UTC from IEEE Xplore. Restrictions apply.

https://techjury.net/blog/how-much-data-is-created-every-day/#gref
https://techjury.net/blog/how-much-data-is-created-every-day/#gref
https://dx.doi.org/10.1145/1140402.1140409
https://dx.doi.org/10.1145/3183713.3196909
https://dx.doi.org/10.1145/3293883.3295706
https://dx.doi.org/10.1145/3401071.3401659
https://dx.doi.org/10.1145/3318464.3389752
https://dx.doi.org/10.1145/2534921.2534949
https://dx.doi.org/10.14778/3389133.3389135
https://dx.doi.org/10.14778/3489496.3489512
https://dx.doi.org/10.1145/3318464.3389711
https://dx.doi.org/10.1145/3299869.3319860
https://dx.doi.org/10.1145/3299869.3319860
https://dx.doi.org/10.1145/1376616.1376670
https://black-friday.global/
https://black-friday.global/
https://www.featurestore.org/
https://www.featurestore.org/
https://tech.marksblogg.com/billion-nyc-taxi-rides-redshift.html
https://tech.marksblogg.com/billion-nyc-taxi-rides-redshift.html

966 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 6, JUNE 2024

[53] P. Van Sandt, Y. Chronis, and J. M. Patel, “Efficiently searching in-
memory sorted arrays: Revenge of the interpolation search?,” in Proc.
Int. Conf. Manage. Data, New York, NY, USA, 2019, pp. 36–53,
doi: 10.1145/3299869.3300075.

[54] V. Pandey, A. Kipf, T. Neumann, and A. Kemper, “How good are modern
spatial analytics systems?,” in Proc. VLDB Endow., vol. 11, no. 11,
pp. 1661–1673, Jul. 2018.

[55] A. Guttman, “R-trees: A dynamic index structure for spatial searching,”
in Proc. ACM SIGMOD Int. Conf. Manage. Data, New York, NY, USA,
1984, pp. 47–57.

[56] J. Kim, S.-G. Kim, and B. Nam, “Parallel multi-dimensional range query
processing with r-trees on GPU,” J. Parallel Distrib. Comput., vol. 73,
no. 8, pp. 1195–1207, 2013.

[57] K. Kim, S. K. Cha, and K. Kwon, “Optimizing multidimensional index
trees for main memory access,” ACM SIGMOD Rec., vol. 30, no. 2,
pp. 139–150, 2001.

[58] A. Hadian, B. Ghaffari, T. Wang, and T. Heinis, “COAX: Correlation-
aware indexing on multidimensional data with soft functional dependen-
cies,” 2020, arXiv: 2006.16393.

[59] J. Liu et al., “Exploring query processing on CPU-GPU integrated edge
device,” IEEE Trans. Parallel Distrib. Syst., vol. 33, no. 12, pp. 4057–4070,
Dec. 2022.

[60] M. Mitzenmacher, “A model for learned bloom filters, and optimizing
by sandwiching,” in Proc. 32nd Int. Conf. Neural Inf. Process. Syst., Red
Hook, NY, USA, 2018, pp. 462–471.

[61] J. Wu, Y. Zhang, S. Chen, Y. Chen, J. Wang, and C. Xing, “Updatable
learned index with precise positions,” in Proc. VLDB Endowment, vol. 14,
no. 8, pp. 1276–1288, 2021.

[62] R. Marcus, P. Negi, H. Mao, N. Tatbul, M. Alizadeh, and T. Kraska, BAO:
Making Learned Query Optimization Practical. New York, NY, USA:
ACM, 2021, pp. 1275–1288.

[63] L. Cen, A. Kipf, R. Marcus, and T. Kraska, “LEA: A learned encoding
advisor for column stores,” in Proc. 4th Workshop Exploiting AI Techn.
Data Manage., New York, NY, USA, 2021, pp. 32–35.

[64] P. Li, Y. Hua, P. Zuo, and J. Jia, “A scalable learned index scheme in
storage systems,” 2019, arXiv:1905.06256.

[65] V. Nathan, J. Ding, M. Alizadeh, and T. Kraska, “Learning multi-
dimensional indexes,” in Proc. ACM SIGMOD Int. Conf. Manage. Data,
New York, NY, USA, 2020, pp. 985–1000.

[66] R. Marcus, E. Zhang, and T. Kraska, “CDFShop: Exploring and optimizing
learned index structures,” in Proc. ACM SIGMOD Int. Conf. Manage. Data,
New York, NY, USA, 2020, pp. 2789–2792.

[67] G. Vinciguerra, P. Ferragina, and M. Miccinesi, “Superseding traditional
indexes by orchestrating learning and geometry,” 2019, arXiv:1903.00507.

[68] A. Hadian and T. Heinis, “Considerations for handling updates in learned
index structures,” in Proc. 2nd Int. Workshop Exploiting Artif. Intell. Techn.
Data Manage., New York, NY, USA, 2019, pp. 1–4.

[69] X. Zhong, Y. Zhang, Y. Chen, C. Li, and C. Xing, “Learned index on GPU,”
in Proc. IEEE 38th Int. Conf. Data Eng. Workshops, 2022, pp. 117–122.

[70] Z. Dai and A. Shrivastava, “Adaptive learned bloom filter (ADA-BF):
Efficient utilization of the classifier,” Proc. Adv. Neural Inf. Process. Syst.,
vol. 33, pp. 11700–11710, 2020.

[71] C.-Y. Hsu, P. Indyk, D. Katabi, and A. Vakilian, “Learning-based frequency
estimation algorithms,” in Proc. Int. Conf. Learn. Representations, 2019,
pp. 1–20.

[72] W. Xiang, H. Zhang, R. Cui, X. Chu, K. Li, and W. Zhou, “PAVO: A
RNN-based learned inverted index, supervised or unsupervised?,” IEEE
Access, vol. 7, pp. 293–303, 2019.

[73] K. Vaidya, E. Knorr, T. Kraska, and M. Mitzenmacher, “Partitioned learned
bloom filter,” 2020, arXiv:2006.03176.

[74] S. Macke, A. Beutel, T. Kraska, M. Sathiamoorthy, D. Z. Cheng, and E.
Chi, “Lifting the curse of multidimensional data with learned existence
indexes,” in Proc. Workshop ML Syst. NeurIPS, 2018, Art. no. 6.

[75] M. Zhang, H. Wang, J. Li, and H. Gao, “Learned sketches for frequency
estimation,” Inf. Sci., vol. 507, pp. 365–385, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0020025519307856

[76] J. Fix, A. Wilkes, and K. Skadron, “Accelerating braided B+ tree searches
on a GPU with CUDA,” in Proc. 2nd Workshop on Appl. Multi Many Core
Processors: Anal., Implementation, Performance, 2011.

[77] M. Lopresti, N. Miranda, F. Piccoli, and N. Reyes, “Solving multiple
queries through a permutation index in GPU,” Comput. Y Sistemas, vol. 17,
no. 3, pp. 341–356, 2013.

[78] H. Cheng, Z. Yong, and X. Yun, “BitMapper2: A GPU-accelerated all-
mapper based on the sparse q-gram index,” IEEE/ACM Trans. Comput.
Biol. Bioinf., vol. 16, no. 3, pp. 886–897, May/Jun. 2019.

[79] B. Tran, B. Schaffner, J. M. Myre, J. Sawin, and D. Chiu, “Exploring
means to enhance the efficiency of GPU bitmap index query processing,”
Data Sci. Eng., vol. 6, no. 2, pp. 209–228, 2021.

[80] H. Lu, Y.-Y. Ng, and Z. Tian, “T-tree or b-tree: Main memory database
index structure revisited,” in Proc. 11th Australasian Database Conf.,
2000.

[81] J. Zhou, G. Qi, H. V. Jagadish, W. Luan, and Y. Zheng, “Generic inverted
index on the GPU,” National Univ. Singapore, Tech. Rep., 2015.

[82] J. Kim, S. Hong, and B. Nam, “A performance study of traversing spatial
indexing structures in parallel on GPU,” in Proc. IEEE 14th Int. Conf.
High Perform. Comput. Commun, IEEE 9th Int. Conf. Embedded Softw.
Syst., 2012, pp. 855–860.

[83] M. Kim, L. Liu, and W. Choi, “A GPU-aware parallel index for process-
ing high-dimensional big data,” IEEE Trans. Comput., vol. 67, no. 10,
pp. 1388–1402, Oct. 2018.

Jiesong Liu is a research assistant with the Key
Laboratory of Data Engineering and Knowledge En-
gineering (MOE), Renmin University of China. He
joined the Key Laboratory of Data Engineering and
Knowledge Engineering (MOE), in 2020. His major
research interests include database systems, and par-
allel and distributed systems.

Feng Zhang (Member, IEEE) received the bache-
lor’s degree from Xidian University, in 2012, and
the PhD degree in computer science from Tsinghua
University, in 2017. He is a professor with DEKE
Lab and School of Information, Renmin University of
China. His major research interests include database
systems, and parallel and distributed systems.

Lv Lu is a research assistant with the Key Laboratory
of Data Engineering and Knowledge Engineering
(MOE), Renmin University of China. She joined the
Key Laboratory of Data Engineering and Knowledge
Engineering (MOE) from 2019 to 2021. Her major re-
search interests include high performance computing,
artificial intelligence and machine learning systems.

Chang Qi is a graduate student, presently majoring
in computer applications and technology, with the
School of Information, Renmin University of China.
She is currently conducting academic research in
the Database & Intelligence Information Retrieval
(DBIIR) Lab under the guidance of professor Zhang
Feng. Her research interests include GPU accelera-
tion, Big Data systems, high performance computing,
and machine learning systems.

Xiaoguang Guo is a research assistant with the Key
Laboratory of Data Engineering and Knowledge En-
gineering (MOE), Renmin University of China. He
joined the Key Laboratory of Data Engineering and
Knowledge Engineering (MOE), in 2020. His major
research interests include database systems and dis-
tributed systems.

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 02,2024 at 01:07:20 UTC from IEEE Xplore. Restrictions apply.

https://dx.doi.org/10.1145/3299869.3300075
https://www.sciencedirect.com/science/article/pii/S0020025519307856

LIU et al.: G-LEARNED INDEX: ENABLING EFFICIENT LEARNED INDEX ON GPU 967

Dong Deng received the bachelor’s degree from
beihang University, in 2011, and the PhD degree
in computer science from Tsinghua University, in
2016. He is an assistant professor in the Computer
Science Department with Rutgers University-New
Brunswick. His research interests include data man-
agement, database system, data curation, and data-
centric AI.

Guoliang Li received the PhD degree in computer
science from Tsinghua University, Beijing, China, in
2009. He is currently working as a professor in the
Department of Computer Science, Tsinghua Univer-
sity, Beijing, China. His research interests mainly in-
clude data cleaning and integration, spatial databases,
crowdsourcing, and AI & DB co-optimization.

Huanchen Zhang received the BS degree in com-
puter engineering from the University of Wiscon-
sin, Madison, in 2013, and the PhD degree in
computer science from the Computer Science De-
partment, Carnegie Mellon University, in 2020. He
is an assistant professor in the Institute for Interdisci-
plinary Information Sciences at Tsinghua University.
His research interests include database management
systems, indexing/filtering data structures, data com-
pression, and cloud databases.

Jidong Zhai (Senior Member, IEEE) received the
BS degree in computer science from the University
of Electronic Science and Technology of China, in
2003, and the PhD degree in computer science from
Tsinghua University, in 2010. He is a professor in
Department of Computer Science and Technology,
Tsinghua University. His research interests include
performance evaluation for high performance com-
puters, performance analysis and modeling of parallel
applications.

Hechen Zhang is currently working toward the High
School Affiliated to Renmin University of China.
He joined the Key Laboratory of Data Engineering
and Knowledge Engineering (MOE) as a research
assistant since 2022. His research interests include
parallel and distributed systems, and machine learn-
ing systems.

Yuxing Chen received the PhD degree in computer
science from the University of Helsinki, Finland, in
2021. He currently works as a senior research engi-
neer in the database R&D department with Tencent,
China. His research interests focus on database per-
formance and evaluation, HTAP database design, and
distributed system design.

Anqun Pan is the technical director of the Database
R&D Department with Tencent in China. With more
than 15 years of experience, he has specialized in the
research and development of distributed computing
and storage systems. Currently, he is responsible for
steering the research and development of the TDSQL
distributed database system.

Xiaoyong Du (Member, IEEE) received the BS de-
gree from Hangzhou University, Zhejiang, China, in
1983, the ME degree from Renmin University of
China, Beijing, China, in 1988, and the PhD degree
from Nagoya Institute of Technology, Nagoya, Japan,
in 1997. He is currently a professor with the School of
Information, Renmin University of China. His current
research interests include databases and intelligent
information retrieval.

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on June 02,2024 at 01:07:20 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

