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ABSTRACT
The development of hyperparameter optimization (HPO) algorithms

is an important topic within both the machine learning and data

management domains. While numerous strategies employing early

stopping mechanisms have been proposed to bolster HPO efficiency,

there remains a notable deficiency in understanding how the se-

lection of early stopping metrics influences the reliability of early

stopping decisions and, by extension, the broader HPO outcomes.

This paper undertakes a systematic exploration of the impact of

metric selection on the effectiveness of early stopping-based HPO.

Specifically, we introduce a set of metrics that incorporate uncer-

tainty and highlight their practical significance in enhancing the

reliability of early stopping decisions. Our empirical experiments

on HPO and NAS benchmarks show that using training loss as an

early stopping metric in the early training stages improves HPO

outcomes by up to 24.76% compared to the more widely accepted

validation loss. Furthermore, integrating uncertainty into themetric

yields an additional improvement of up to 4% under budget con-

straints, translating intomeaningful resource savings and scalability

benefits in large-scale HPO scenarios. These findings demonstrate

the critical role of metric selection while shedding light on the

potential implications of integrating uncertainty as a metric. This

research provides empirical insights that serve as a compass for

the selection and formulation of metrics, thereby contributing to a

more profound comprehension of mechanisms underpinning early

stopping-based HPO.
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1 INTRODUCTION
Recent years have seen a trend towards integrating machine learn-

ing (ML) functionalities into data management systems [8, 18, 20–

22, 28, 39, 51, 54, 56–58]. Prominent examples include Apache Sys-

temDS [7], Snorkel [41], and HoloClean [42], which facilitate di-

verse aspects of data handling from integration to predictive analy-

sis. Developing effective ML models to best meet the needs of data

management systems is however challenging. Although numerous

AutoML systems have emerged in recent years to facilitate the pro-

cess (e.g., Google Vertex AI [19], Amazon SageMaker Autopilot [10],

Microsoft’s FLAML [46]), a critical aspect ofMLmodel development,

hyperparameter optimization (HPO), is yet to be better understood.

The primary challenge lies in the limited understanding of how un-

certainties in model predictions affect the reliability of optimization,

which is vital for achieving robust HPO outcomes.

The goal of HPO is to determine the best values of some hy-

perparameters for a model or system. Its importance for tuning

data systems has been well recognized by the data system commu-

nity [30, 32, 33, 43, 47, 55, 56]. The hyperparameters for ML include

learning rates, regularization schemes, neural architecture-specific

configurations (e.g., types of layers, number of hidden units, etc.),

and so on. Their values are critical to model performance.

HPO is time-consuming due to the extensive training of numer-

ous candidate models in a combinatorial hyperparameter space [45,

50]. To address this challenge, various HPO strategies have been de-

veloped, employing methods such as Bayesian optimization, genetic

algorithms, and rule-based searches for more efficient exploration

of the hyperparameter space [6, 53].

Regardless of the used search methods, HPO schemes can be

categorized into two main types: complete evaluation-based HPO
and early stopping-based (or multi-fidelity) HPO [32]. Complete

evaluation-based HPO involves training the model to completion

for each hyperparameter configuration, ensuring thorough testing

of each setting but at a high computational cost. In contrast, early

stopping-based HPO can fit into an acceptable time budget through

early termination of training for underperforming candidates based

on specific early stopping metrics [2, 35, 37]. This approach can

drastically reduce the computational time and resources, and hence

becomes dominant in HPO systems [16, 26, 27, 31, 32].

Although previous studies have explored various early stopping-

based HPO schemes [5, 13, 36, 48, 52] and highlighted their cost-

effectiveness, the understanding of early stopping criteria, espe-

cially the performance metrics used for model ranking, remains

incomplete. Typically, model training uses separate datasets for
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training and validation to compute respective metrics, with vali-

dation loss often being the preferred metric for guiding HPO pro-

cesses; some, especially in data management-centric production

environments, use training metrics instead [4, 9, 17].

Early stopping metrics directly determine what models to keep

and what models to discard. Despite its pivotal role in HPO, no prior

studies have systematically explored it. Existing HPOs have been

using either training loss or validation loss as the early stopping

metric; which one to use is based on the practitioners’ personal

preferences, with validation loss being a more frequent choice.

Some fundamental questions on early stopping metric remain

open:

(1) How reliable are commonly used performance metrics, specif-

ically training and validation losses, for HPO? How do they

compare to one another?

(2) How to explain the reasons for the different effectiveness of

the metrics? More fundamentally, what are the nature of early

stopping and the key factors for its effectiveness?

(3) Besides the commonly considered measures, are there any

other measures worth considering for early stopping metrics?

More specifically, ML models have inherent uncertainty in

their predictions. How would such uncertainty impact early

stopping? Would it be worthy to incorporate it into early stop-

ping metrics for HPO? And would the combination of multiple

metrics help? How to do that?

This paper aims to answer these fundamental questions and

advance the principled understanding of early stopping in HPO.

We do that through a four-fold exploration. (i) We first conduct

an empirical study on nine HPO tasks in three widely used HPO

benchmarks (Nas-Bench-201, LCBench, and HPOBench) over nine

datasets, and systematically examine the effectiveness of the popu-

lar early stopping metrics for HPO. We use the concept of reliability

to assess if a specific performance metric shows statistically signifi-

cant superiority over others. (ii) From the data, we distill a set of

insights on the relative effectiveness of the popular early stopping

metrics, theoretically analyze the inherent nature of early stop-

ping, and reveal the reasons for the pros and cons of those metrics.

(iii) We study the impact of model uncertainty–the variations in

model predictions–on early stopping, propose a set of metrics that

integrate model uncertainty, and uncover the potential of incor-

porating model uncertainty into early stopping metrics for HPO.

(iv) By identifying distinct stages in the model learning process,

we further develop stage-adaptive metrics and augment them with

uncertainty measures. This integration aligns early stopping more

closely with the dynamics of model training, achieving significant

improvement over traditional metrics.

To the best of our knowledge, this work is the first that gives

a systematic exploration on early stopping metric for HPO. By

addressing some fundamental open questions, it sheds light on

how uncertainty and training stages influence metric design and

selection, providing valuable insights and empirical guidelines for

more effective HPO strategies.

2 BACKGROUND — HPO OVERVIEW
Hyperparameter Optimization (HPO) is an important mechanism in

automating the adjustment of hyperparameters, enabling efficient
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model deployment for practical applications [14]. As illustrated in

Figure 1, the HPO process begins with a problem definition phase,

which includes identifying hyperparameters, setting tuning objec-

tives, establishing constraints such as computational budgets, and

specifying training and validation datasets. Using these definitions,

the HPO Tuner initiates an iterative tuning process.

The HPO Tuner comprises a scheduler and a sampler. First, the
scheduler ① determines the number of samples based on available

budgets, and the sampler ② selects hyperparameters accordingly.

Next, the Tuner ③ sets up candidate models with these hyperpa-

rameters and ④ trains them for a defined number of epochs as per

the scheduler’s instructions. The scheduler then ⑤ collects perfor-

mance metrics and ranks the models. If early stopping is employed,

the scheduler ⑥ halts underperforming models and directs the rest

to continue training. At the end of a tuning cycle, the scheduler

provides training statistics to the sampler, which then ⑦ updates its

internal parameters to suggest configurations for the next round.

Different HPO strategies adopt varying scheduling policies. Strate-

gies that incorporate early stopping integrate an internal cycle

(steps ④, ⑤, and ⑥) to halt unpromising models early in each tuning

round. The interaction between early stopping and sampling meth-

ods can impact the efficacy of these strategies. General-purpose

samplers, such as random sampling, are fully compatible with early

stopping, as seen in our Hyperband experiments in the following

sections. In contrast, experience-based samplers such as Bayesian

optimization may suffer disruptions from premature stops, poten-

tially compromising their predictive accuracy and convergence

guarantees. However, advanced approaches such as BOHB [15]

reconcile sampling with early stopping by favoring evaluations

that extend to larger budgets, while tree-structured Parzen estima-

tors have been shown to outperform Gaussian Processes in early

stopping contexts due to their flexibility and scalability [15, 53].

Budget-conscious evolutionary algorithms have also been effec-

tively combined with early stopping [3]. In general, the success of

these strategies hinges on the performance metrics collected in step

⑤, which are essential for ensuring the reliability of HPO results.

3 EMPIRICAL STUDY ON EARLY STOPPING
METRICS FOR HPO

In early stopping-based HPO, performance metrics play a criti-

cal role in assessing each configuration’s capability at a specific

fidelity level, informing the early stopping decision for filtering.

An effective metric should consistently reflect a model’s present

performance and its potential for improvement. Despite extensive
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Figure 2: One iteration of SH — An example of running one

round of SH on the ImageNet-16-120 benchmark, where 𝑅 = 27,

𝜂 = 3, and one unit of resource corresponds to 8 epochs.

Algorithm 1: Pseudocode for Successive Halving (SH).
Input : initial budget 𝑏0, maximum budget 𝑅, filtering

ratio 𝜂, and set of 𝑛 configurations 𝑇
1 𝑏 = 𝑏0
2 while 𝑏 ≤ 𝑅 do
3 𝐿 = { ˆ𝑓 𝑏 (𝛾) : 𝛾 ∈ 𝑇 } // early stopping metrics
4 𝑇 = top𝑘 (𝑇, 𝐿, ⌊|𝑇 | · 𝜂−1⌋) // ranking
5 𝑏 = 𝜂 · 𝑏
6 end

Algorithm 2: Pseudocode for target HPO algorithms.

Input :budget 𝑅, filtering ratio 𝜂
1 𝑠𝑚𝑎𝑥 = ⌊log𝜂 (𝑅)⌋
2 for 𝑠 ∈ {𝑠𝑚𝑎𝑥 , 𝑠𝑚𝑎𝑥 − 1, . . . , 0} do
3 sample 𝑛 = ⌈ 𝑠𝑚𝑎𝑥+1

𝑠+1 · 𝜂𝑠 ⌉ configurations 𝑇 run SH on 𝑇

with 𝑅 · 𝜂−𝑠 as initial budget
4 end

research on early stopping-based HPO methods, there is a notable

absence of consensus regarding the selection and reliability of met-

rics for guiding early stopping decisions. In this section, we address

this gap by empirically comparing commonly used metrics to un-

veil underlying differences. We start by detailing the experimental

setup applied across all experiments throughout this paper.

3.1 Experimental Setup
3.1.1 Target HPO Algorithm. We assess the reliability of common

metrics within single-objective classification tasks using Successive

Halving and Hyperband algorithms.

Successive Halving (SH) [25] employs a heuristic approach to

allocate increasing resources to the most promising configurations

based on their performance metrics. As outlined in Algorithm 1,

SH begins with a predefined set of configurations, budget limits,

and a filtering ratio. Each configuration is initially evaluated with

the lowest budget (line 3), and only the top-performing fraction,

defined by 1/𝜂, is retained for the next round (line 4). This iterative
process of filtering and reallocating resources continues until one

configuration receives the maximum budget. Figure 2 illustrates a

single iteration of the SH algorithm.

Hyperband [31] extends SH by better balancing the number of

configurations and budget allocation. As outlined in Algorithm 2,

Hyperband takes two key parameters: 1) the maximum budget 𝑅

per configuration, and 2) the filtering ratio 𝜂, which controls how

many configurations advance in each SH round. These parameters
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together define the maximum number of iterations 𝑠𝑚𝑎𝑥 for the

inner loop (line 1). The outer loop starts with the most aggressive

level 𝑠 = 𝑠𝑚𝑎𝑥 , exploring the widest set of configurations (line 2),

ensuring at least one configuration receives the full budget 𝑅. Sub-

sequent rounds progressively reduce the number of configurations

by a factor of 1/𝜂 until 𝑠 = 0, at which point all configurations are

assigned the maximum budget 𝑅.

3.1.2 Target HPO Tasks. We apply SH and Hyperband on three

tuning benchmarks. Detailed specifications can be found in Table 1.

Table 1: Benchmark Specifications

Nas-Bench-201 LCBench

Datasets CIFAR-10 CIFAR-100

ImageNet Fashion-MNIST,

-16-120 Volkert

Train/Valid/Test 25k/25k/10k 50k/5k/5k 151k/3k/3k 4k/2k/1k

Hyperparameter

1←− 0

2←− {0, 1}∗
3←− {0, 1, 2}∗

Candidate OPs:

none,

skip_connect,

nor_conv_1x1,

nor_conv_3x3,

avg_pool_3x3

batch size: [16, 512]

learning rate: [1𝑒−4, 1𝑒−1]
momentum: [0.1, 0.99]

weight decay: [1𝑒−5, 1𝑒−1]
dropout: [0.0, 1.0]

#layers: [1, 5]

max. #units/layer: [64, 1024]

HPOBench — NN HPOBench — BNN

Datasets Higgs Adult Boston Housing Protein Structure

Train/Valid/Test 6k/3k/1k 30k/15k/5k 0.3k/0.1k/0.1k 3k/1k/1k

Hyperparameter

batch size: [4, 256], depth: [1, 3]

alpha: [1𝑒−8, 1], width: [16, 1024]
learning rate init: [1𝑒−5, 1.0]

burn in ratio: [0, 0.8], mdecay: [0, 1]

#𝑢𝑛𝑖𝑡𝑠1: [16, 512], #𝑢𝑛𝑖𝑡𝑠2: [16, 512]

learning rate: [1𝑒−6, 0.1]

Neural Architecture Search (NAS) [11] provides offline evalua-

tions of network architectures on three datasets: CIFAR-10, CIFAR-

100, and ImageNet-16-120. It features a search space represented

by a densely connected DAG, as shown in Figure 3 (a). The DAG

contains four nodes, labeled 0-3 in Table 1. Edges connecting these

nodes are hyperparameters selected from five candidate operations

listed in Table 1. All configurations are trained for 200 epochs.

Tabular Classification. We use LCBench [60], which contains

offline evaluations of shaped MLP models on OpenML datasets, as

shown in Figure 3 (b). The search space includes seven hyperparam-

eters: five are standard training parameters such as regularization

and learning rate, and two relate to architecture. LCBench evaluates

2k configurations under three budgets (12, 25, and 50 epochs). We

choose the maximum budget of 50 epochs for our experiments.

HPOBench. We use HPOBench [13], focusing on the Neural Net-

work (NN) and Bayesian Neural Network (BNN) benchmarks. These



“raw” benchmarks require manual training from scratch, allowing

full access to training statistics across all epochs and supporting

multiple trials with varying random seeds. In contrast, “tabular” or

“surrogate” benchmarks that offer limited fidelity or rely on per-

formance prediction are excluded. The NN benchmark optimizes

five hyperparameters for a feedforward neural network trained on

OpenML datasets. The BNN benchmark involves five hyperparame-

ters and is applied to regression tasks from the UCI repository [12].

3.1.3 Methodology. The early stopping metrics we examine in-

clude training loss and validation loss. To validate the reliability

of these metrics, we conduct experiments across various budget

constraints (𝑅) and filtering ratios (𝜂) within the Hyperband algo-

rithm, as detailed in Table 2. For each setting, we perform 1000

repetitions with different random seeds, each including a randomly

selected subset of model configurations. We compare the outcomes

of early stopping decisions guided by different metrics, and we

employ the Wilcoxon signed-rank test [49] to determine the pres-

ence of significant differences among the metrics. To report results,

we consider indicators such as final performance, performance over
time, and performance regret (defined as the discrepancy between

the best-found value and the best-known value) [13].

Table 2: Early Stop Settings — 𝑅 denotes the maximum budget

available to a single configuration. 𝜂 determines the proportion of

configurations that persist in every early stopping round.

Nas-Bench-201 LCBench HPOBench—NN HPOBench—BNN

𝑅 50, 81, 160, 180 10, 15, 30, 45 40, 80, 120, 160 2500, 5000, 7500, 10000

𝜂 3, 1.33 3, 1.33 3, 1.33 3, 1.33

3.2 Observed Reliability of Common Metrics
To investigate how the choice of metrics–training loss versus valida-

tion loss–affects early stopping strategies in HPO, we first conduct

a series of experiments on the Nas-Bench-201 benchmark, using

random sampling combined with SH for model selection.

Figure 4 compares final test accuracies achieved when using

training versus validation losses as early stopping metrics. Fig-

ure 4 (a) shows the distribution of differences in final test accuracy

between models selected respectively by these two metrics across

varying budgets. The differences are computed by subtracting the

test accuracies achieved using validation loss from that achieved

using training loss. Contrary to the conventional preference for

validation metrics, our findings in the complex Nas-Bench-201 task

indicate that training metrics consistently outperform validation

metrics in selecting better models across all budget levels, with an

average accuracy difference of 0.72% and a maximum of 24.76%.

Additionally, Figure 4 (b) explores how the disparity between

early stopping decisions informed by these metrics evolves under

a computational budget of 150. Performance regret, defined here

as the gap between the best-performing model found by HPO and

the true optimum among explored candidates, shows that rely-

ing on validation loss for early stopping frequently halts training

prematurely, yielding sub-optimal final selections.

These observations underscore that the choice of metric – train-

ing versus validation – significantly impacts the outcomes of HPO.

Table 3: Analysis of Common Metrics with the Wilcoxon
Signed-Rank Test — The hypothesis posits that training loss𝑚T
is superior to validation loss 𝑚V . A p-value closer to zero indi-

cates higher reliability of training loss, while to one suggests better

performance of validation loss. 𝑑𝑎𝑐𝑐 (𝑑𝑙𝑜𝑠𝑠 ) represents the average

difference in final test accuracy (loss) between two metrics.

Nas-Bench-201 CIFAR-10 CIFAR-100

ImageNet-

LCBench Volkert

Fashion-

16-120 MNIST

𝑅 = 50 p 7.6𝑒−109 2.2𝑒−78 6.6𝑒−55 𝑅 = 9 1.0𝑒−9 5.4𝑒−6

𝜂 = 3 𝑑𝑎𝑐𝑐 0.940 1.009 0.912 𝜂 = 3 0.187 0.060

𝑅 = 81 p 4.0𝑒−119 3.1𝑒−79 7.8𝑒−49 𝑅 = 15 7.0𝑒−12 4.0𝑒−8

𝜂 = 3 𝑑𝑎𝑐𝑐 0.938 1.021 0.763 𝜂 = 3 0.206 0.067

𝑅 = 160 p 1.8𝑒−40 8.9𝑒−153 2.9𝑒−27 𝑅 = 30 0.999 0.999

𝜂 = 1.33 𝑑𝑎𝑐𝑐 0.279 2.476 0.347 𝜂 = 1.33 -0.243 -0.071

𝑅 = 180 p 6.1𝑒−48 2.4𝑒−158 3.3𝑒−7 𝑅 = 45 0.999 0.999

𝜂 = 1.33 𝑑𝑎𝑐𝑐 0.277 3.084 0.165 𝜂 = 1.33 -0.347 -0.066

HPOBench-NN Higgs Adult HPOBench-BNN Boston Protein

𝑅 = 40 p 5.4𝑒−92 7.3𝑒−17 𝑅 = 2500 p 1.5𝑒−60 4.1𝑒−41

𝜂 = 3 𝑑𝑎𝑐𝑐 0.003 9.5𝑒−4 𝜂 = 3 𝑑𝑙𝑜𝑠𝑠 -36.762 -1.118

𝑅 = 80 p 9.9𝑒−21 0.257 𝑅 = 5000 p 2.8𝑒−145 1.7𝑒−6

𝜂 = 3 𝑑𝑎𝑐𝑐 0.001 1.0𝑒−4 𝜂 = 3 𝑑𝑙𝑜𝑠𝑠 -94.295 -1.167

𝑅 = 120 p 0.248 0.999 𝑅 = 7500 p 1.4𝑒−115 3.7𝑒−34

𝜂 = 1.33 𝑑𝑎𝑐𝑐 1.1𝑒−4 -0.001 𝜂 = 1.33 𝑑𝑙𝑜𝑠𝑠 -79.010 -0.015

𝑅 = 160 p 0.001 0.999 𝑅 = 10000 p 4.0𝑒−7 3.2𝑒−5

𝜂 = 1.33 𝑑𝑎𝑐𝑐 7.1𝑒−4 9.3𝑒−4 𝜂 = 1.33 𝑑𝑙𝑜𝑠𝑠 -9.381 -0.009

Interestingly, our findings challenge the widespread practice of

favoring validation metrics, showing that training metrics can be

more effective in guiding early stopping in HPO.

In conjunctionwith qualitative analysis, we employ theWilcoxon

signed-rank test to statistically evaluate the differences between

training and validation metrics. Assuming that the final test re-

sults derived from training loss exceed that from validation loss,

we report the resulting p-values alongside observed performance

differences in Table 3. The results reveal marked disparities in HPO

outcomes. Initially, training loss (𝑚T ) significantly outperforms

validation loss (𝑚V ) under limited budgets, especially during early

training stages. For example, in Nas-Bench-201, the results at𝑅 = 50

and 𝑅 = 81 show extremely low p-values and significant accuracy

discrepancies. However, as budget allocation increases, validation

loss progressively becomes more indicative of final performance.

With larger budgets, p-values generally rise, and final discrepancies
diminish. Specifically, in LCBench and NN, validation loss shows

notable superiority over training loss when 𝑅 ≥ 30 and 𝑅 ≥ 120,

respectively. Conversely, in Nas-Bench-201 and BNN, training loss

consistently exhibits its advantage across varying budgets, high-

lighted by an average accuracy gap of 3% on CIFAR-100 at 𝑅 = 180.

We distill these observations into the following insight:

Insight 1: training loss, as opposed to the commonly favored
validation loss, is a more effective metric for guiding early
stopping in HPO across various budgets. However, as the avail-
able budget increases, validation loss becomes more effective.

4 THE REASONS AND THEORETICAL
ANALYSIS

This section examines the reasons for the observed variances in the

effectiveness of the common metrics and, more importantly, reveals
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test accuracy obtained when employing training loss versus validation loss as early stopping metrics. (b) demonstrates the disparities in test

accuracy between the optimal models selected based on these metrics and the actual optimal models throughout the tuning process.

the underlying factors and their impact on the efficacy of early

stopping metrics. Before delving into a detailed analysis, we first

examine the models’ performance across their training lifecycles.

4.1 Model Performance over Time
Figure 5 displays the performance-over-time curves for validation
and training losses across all target tasks. The benchmarks show

distinct characteristics; Nas-Bench-201 and BNN exhibit consider-

able volatility in validation losses while maintaining stable training

losses. Conversely, LCBench and NN showmoderate fluctuations in

both metrics, with more noticeable variability in validation losses.

Note that in the BNN figures, thicker lines indicate greater perfor-

mance fluctuations. The learning trajectories also differ; loss values

in Nas-Bench-201 and BNN decline slowly over epochs, whereas

LCBench and NN stabilize more rapidly. These differences can be

attributed to the varying model complexities and dataset sizes out-

lined in Section 3.1.2: LCBench and NN utilize shallow MLP models,

while BNN models weights as probability distributions, resulting

in higher computational complexity. Nas-Bench-201, on the other

hand, employs more complex architectures and larger datasets.

Moreover, initial loss values in Nas-Bench-201 are closely clus-

tered and relatively high, with significant performance divergences

emerging later in training. In contrast, configurations in LCBench

and HPOBench show clear performance differences from the outset.

These patterns suggest that early stopping-based HPO is more ef-

fective for lightweight tasks, where clear early disparities facilitate

decisive early stopping. However, in Nas-Bench-201, less distinct

early performance differences might lead to the premature termi-

nation of potentially superior models. Therefore, careful selection

of early stopping metrics is especially crucial in Nas-Bench-201.

4.2 Theoretical Analysis
We conduct a theoretical analysis to investigate the causes of sub-

optimal decisions in early stopping strategies before convergence.

Consider an HPO task under a supervised learning context where a

model𝑀 is trained on data points D𝑇 = {(𝑥𝑖 , 𝑦𝑖 )}𝑛𝑖=1 sampled i.i.d.

from some unknown data distributionU. Let there be 𝐾 hyperpa-

rameter candidates 𝛾1, 𝛾2, . . . , 𝛾𝐾 ∈ Γ. We denote the model trained

with hyperparameter 𝛾 for 𝑡 epochs as𝑀𝑡
𝛾 and the converged model

as 𝑀∗𝛾 . Given loss function ℓ (·, ·) ∈ [𝑙𝑏,𝑢𝑏] (𝑙𝑏 ≥ 0), the expected
risks of models𝑀𝑡

𝛾 and𝑀∗𝛾 with respect toU are defined as:
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Figure 5: Performance over Time — Randomly select 6 configu-

rations to show how losses change over time in each benchmark.

Validation losses show higher fluctuation.

𝑓 𝑡 (𝛾 ) = EU
[
ℓ

(
y, 𝑀𝑡

𝛾 (x)
)]
, and 𝑓 ∗ (𝛾 ) = EU

[
ℓ

(
y, 𝑀∗𝛾 (x)

)]
. (1)

The objective of HPO is to identify hyperparameters 𝛾𝑜 that

minimize the expected risk of converged models, expressed as 𝛾𝑜 =

argmin𝛾 ∈Γ 𝑓
∗ (𝛾). However, the expected risk cannot be directly

computed asU is unknown. Instead, HPO relies on estimating this

risk using a finite set D drawn i.i.d. from the distributionU. Thus,

practical HPO centers around minimizing the empirical estimate:

ˆ𝑓 ∗ (𝛾 ) = 1

|D |
∑︁

𝑥𝑖 ,𝑦𝑖 ∈D
ℓ
(
𝑦𝑖 , 𝑀

∗
𝛾 (𝑥𝑖 )

)
. (2)

Early stopping (ES) actions at epoch 𝑡 involve filtering models

using a ranking function 𝜋 on a list of empirical estimates:

𝐸𝑆

{
𝜋
(
ˆ𝑓 𝑡 (𝛾1 ), . . . , ˆ𝑓 𝑡 (𝛾𝑘 ) |D

)}
→ {𝛾𝑛1

, . . . , 𝛾𝑛𝑡 }, (3)

where𝑛𝑡 denotes the number of configurations retained after screen-

ing. The ranking function serves as the early stopping criterion,



utilizing performancemetrics at epoch 𝑡 to estimate themodels’ true

capability and guide resource allocation within the HPO process.

Research into early stopping criteria often employs early perfor-

mance metrics as proxies for ultimate model capability. Regardless

of the specific early stopping criterion, its reliability hinges on how

closely the metrics reflect the models’ actual performance. We next

explore factors influencing the reliability of early stopping metrics.

Proposition 4.1. Consider an early stopping-based HPO that
uses model’s loss function as its early stopping metric. Let 𝑓 𝑡 and
ˆ𝑓 𝑡 denote the expected and empirical losses at any epoch 𝑡 before
convergence, and 𝑓 ∗ and ˆ𝑓 ∗ denote the expected and empirical losses
at convergence, as defined in Eqs. 1 and 2. Assume 𝑓 𝑡 (𝛾) ≥ 𝑓 ∗ (𝛾) and
ˆ𝑓 𝑡 (𝛾) ≥ ˆ𝑓 ∗ (𝛾) hold for all 𝛾 ∈ Γ. Let 𝛾𝑜 = argmin𝛾 ∈Γ 𝑓 ∗ (𝛾) be the
optimal hyperparameter, and let 𝛾𝑠𝑜 denote a sub-optimal candidate.
Then, the probability of making an incorrect early stopping decision
at epoch 𝑡 can be bounded according to Markov’s inequality:

𝑃
(
ˆ𝑓 𝑡 (𝛾𝑜 ) − ˆ𝑓 𝑡 (𝛾𝑠𝑜 ) ≥ 0

)
≤ 1

𝑢𝑏 − 𝑙𝑏
(
𝑓 𝑡 (𝛾𝑜 ) − 𝑓 𝑡 (𝛾𝑠𝑜 ) +𝑢𝑏 − 𝑙𝑏

)
. (4)

Using Hoeffding’s inequality [23], we derive tighter bounds:

𝑃
(
ˆ𝑓 𝑡 (𝛾𝑜 ) − ˆ𝑓 𝑡 (𝛾𝑠𝑜 ) ≥ 0

)
≤𝑒
−
2|𝐷 |

(
𝑓 𝑡 (𝛾𝑠𝑜 )−𝑓 𝑡 (𝛾𝑜 )

)
2

(𝑢𝑏−𝑙𝑏)2 ,

if 𝑓 𝑡 (𝛾𝑠𝑜 ) > 𝑓 𝑡 (𝛾𝑜 )

𝑃
(
ˆ𝑓 𝑡 (𝛾𝑜 ) − ˆ𝑓 𝑡 (𝛾𝑠𝑜 ) ≥ 0

)
≥ 1−𝑒

−
2|𝐷 |

(
𝑓 𝑡 (𝛾𝑠𝑜 )−𝑓 𝑡 (𝛾𝑜 )

)
2

(𝑢𝑏−𝑙𝑏)2 ,

if 𝑓 𝑡 (𝛾𝑠𝑜 ) ≤ 𝑓 𝑡 (𝛾𝑜 ) .

(5)

Proof Sketch. Define 𝐹 = ˆ𝑓 𝑡 (𝛾𝑜 ) − ˆ𝑓 𝑡 (𝛾𝑠𝑜 ) +𝑀 , where 𝑀 is

chosen to ensure 𝐹 ≥ 0. Assuming loss values are bounded within

[𝑙𝑏,𝑢𝑏] (𝑙𝑏 ≥ 0), the maximum offset required for 𝐹 is 𝑢𝑏 − 𝑙𝑏. Thus,
choosing𝑀 = 𝑢𝑏 − 𝑙𝑏 guarantees 𝐹 ≥ 0. Using Markov’s inequality,

we obtain:

𝑃
(
ˆ𝑓 𝑡 (𝛾𝑜 ) − ˆ𝑓 𝑡 (𝛾𝑠𝑜 ) ≥ 0

)
= 𝑃 (𝐹 ≥ 𝑀 ) ≤ E[𝐹 ]

𝑀

=
E[ ˆ𝑓 𝑡 (𝛾𝑜 ) − ˆ𝑓 𝑡 (𝛾𝑠𝑜 ) +𝑀 ]

𝑀
.

Given E[ ˆ𝑓 𝑡 (𝛾𝑜 ) − ˆ𝑓 𝑡 (𝛾𝑠𝑜 )] = E[ ˆ𝑓 𝑡 (𝛾𝑜 )] −E[ ˆ𝑓 𝑡 (𝛾𝑠𝑜 )] = 𝑓 𝑡 (𝛾𝑜 ) −
𝑓 𝑡 (𝛾𝑠𝑜 ), we can establish a general upper bound as Eq. 4. To for-

mulate a tighter bound, we employ Hoeffding’s inequality [23]. Let

𝐹 = ˆ𝑓 𝑡 (𝛾𝑜 ) − ˆ𝑓 𝑡 (𝛾𝑠𝑜 ), we have:
𝑃 (𝐹 ≥ 0) = 𝑃 (𝐹 − E[𝐹 ] ≥ −E[𝐹 ]).

When E[𝐹 ] ≤ 0, we obtain:

𝑃
(
𝐹 − E[𝐹 ] ≥ −E[𝐹 ]) ≤ 𝑒− 2|D|E[𝐹 ]2

(𝑢𝑏−𝑙𝑏)2 = 𝑒
− 2|D|

(
𝑓 𝑡 (𝛾𝑜 )−𝑓 𝑡 (𝛾𝑠𝑜 )

)
2

(𝑢𝑏−𝑙𝑏)2 .

When E[𝐹 ] > 0, we obtain:

𝑃
(
𝐹 − E[𝐹 ] ≥ −E[𝐹 ]

)
= 1 − 𝑃

(
𝐹 − E[𝐹 ] < −E[𝐹 ]

)
≥ 1 − 𝑒

− 2|D|E[𝐹 ]2
(𝑢𝑏−𝑙𝑏)2 = 1 − 𝑒

−
2|D|

(
𝑓 𝑡 (𝛾𝑜 )−𝑓 𝑡 (𝛾𝑠𝑜 )

)
2

(𝑢𝑏−𝑙𝑏)2 .

□

This proposition identifies three key factors that impact the

effectiveness of early stopping strategies in HPO: 1) the dataset size

|D|, 2) the discriminative power of metrics, quantified by

(
𝑓 𝑡 (𝛾𝑜 ) −

𝑓 𝑡 (𝛾𝑠𝑜 )
)
2

, and 3) the range of metric values (𝑢𝑏 − 𝑙𝑏)2.

First, a larger dataset size |D| tightens risk bounds, enhancing

the reliability of the metrics derived. This is intuitive, as larger

datasets typically reduce the variance between estimated and true

quantities, which in turn increases the accuracy of the metrics in

reflecting model capabilities. Second, stronger discriminative power

in the metrics, quantified by (𝑓 𝑡 (𝛾𝑠𝑜 ) − 𝑓 𝑡 (𝛾𝑜 )
)
2

, also narrows risk

bounds; thus, designingmore discriminativemetrics during training

is beneficial. Third, narrowing the loss range 𝑢𝑏 − 𝑙𝑏 further re-

duces risk bounds. Although Eqs. 4 and 5 incorporate these bounds,

refining the loss value ranges relevant to specific training stages

can further reduce the probability of early stopping errors. This

underscores the importance of variations in loss values for metric

efficacy. Notably, the ratio

(
𝑓 𝑡 (𝛾𝑜 ) − 𝑓 𝑡 (𝛾𝑠𝑜 )

)
2/(𝑢𝑏 − 𝑙𝑏)2 in Eq. 5

acts as a form of regularization, suggesting that the effectiveness

of early stopping is more significantly determined by the actual

variance in metric values rather than the preset range.

These observations elucidate why, in the context of Nas-Bench-

201, training loss proves to be a more reliable metric for early stop-

ping than validation loss. Training loss accurately captures model

expressiveness, particularly in the early learning phase, leading to

more stable and consistent model rankings. In contrast, validation

loss emphasizes generalization and can favor lower-capacity mod-

els that converge prematurely. Therefore, recognizing the different

stages and the inherent uncertainties in model training is crucial, as

each stage carries distinct assumptions and implications that affect

model evaluation and selection.

We further demonstrate these key factors with a specific Gauss-

ian distribution example.

Example 4.2 (Gaussian Assumption). Given the HPO task as de-

fined in Proposition 4.1. Suppose the losses at epoch 𝑡 for hyperpa-

rameters 𝛾𝑜 and 𝛾𝑠𝑜 followN(𝜇𝑜 , 𝜎2𝑜 ) andN(𝜇𝑠𝑜 , 𝜎2𝑠𝑜 ), respectively.
The estimates

ˆ𝑓 𝑡 (𝛾𝑜 ) and ˆ𝑓 𝑡 (𝛾𝑠𝑜 ) are averaged over the loss values
and thus follow N(𝜇𝑜 , 𝜎

2

𝑜

|D | ) and N(𝜇𝑠𝑜 ,
𝜎2

𝑠𝑜

|D | ). Assume that
ˆ𝑓 𝑡 (𝛾𝑜 )

and
ˆ𝑓 𝑡 (𝛾𝑠𝑜 ) are independent. Then, the probability of an incor-

rect early stopping decision at epoch 𝑡 can be obtained using the

Gaussian cumulative distribution function (CDF) Φ:

𝑃
(
ˆ𝑓 𝑡 (𝛾𝑜 ) ≥ ˆ𝑓 𝑡 (𝛾𝑠𝑜 )

)
= 1 − Φ

(
𝜇𝑜 − 𝜇𝑠𝑜√︃
1

|D| (𝜎
2

𝑜 + 𝜎2

𝑠𝑜 )

)
. (6)

Proof Sketch. Let 𝐹 = ˆ𝑓 𝑡 (𝛾𝑜 ) − ˆ𝑓 𝑡 (𝛾𝑠𝑜 ). Since the difference
of two independent normal variables is also normally distributed, 𝐹

follows N(𝜇𝑜 − 𝜇𝑠𝑜 , 𝜎
2

𝑜

|D | +
𝜎2

𝑠𝑜

|D | ). We want to find 𝑃 (𝐹 ≥ 0), which
is given by:

𝑃 (𝐹 ≥ 0) = 𝑃
(
𝐹 − (𝜇𝑜 − 𝜇𝑠𝑜 )√︃

1

|D | (𝜎
2

𝑜 + 𝜎2𝑠𝑜 )
≥ 𝜇𝑠𝑜 − 𝜇𝑜√︃

1

|D | (𝜎
2

𝑜 + 𝜎2𝑠𝑜 )

)
.

Now, variable
𝐹−(𝜇𝑜−𝜇𝑠𝑜 )√︃

1

|D| (𝜎
2

𝑜+𝜎2

𝑠𝑜 )
follows N(0, 1). According to the CDF

of standard normal distribution, we obtain:

𝑃 (𝐹 ≥ 0) = 1 − Φ
(

𝜇𝑠𝑜 − 𝜇𝑜√︃
1

|D | (𝜎
2

𝑜 + 𝜎2𝑠𝑜 )

)
.

□



The monotonically increasing pattern of the CDF curve for a

standard normal distribution highlights the benefits of using a

larger dataset (|D|) and more discriminative metrics (𝜇𝑠𝑜 − 𝜇𝑜 ). It
also illustrates how variations in the metrics (𝜎2𝑜 +𝜎2𝑠𝑜 ) increase the
risk of incorrect early stopping decisions.

Remark. We assume a Gaussian distribution for the model’s perfor-

mance metrics for several reasons. First, the equivalence between

infinitely wide DNNs and Gaussian processes ensures that the

model outputs follow a Gaussian distribution [29]. Second, Perfor-

mance metrics—typically computed as aggregates (e.g., sums or

averages) of these outputs—converge to a Gaussian distribution

via the Central Limit Theorem when the individual terms are in-

dependent or weakly correlated. This assumption is widely used

in probabilistic modeling and provides a mathematically tractable

framework for uncertainty estimation [1, 34, 40, 59].

From the discussion, we distill the following insight:

Insight 2: metrics derived from large datasets and those
highlighting significant differences between model configura-
tions improve early stopping, while variability in these metrics
increases error risks. Understanding distinct training stages
and uncertainties is crucial for optimal metric selection.

5 MODEL UNCERTAINTY AND EARLY
STOPPING

This section presents the first known exploration of model uncer-

tainty’s effects on early stopping and its incorporation into early

stopping in HPO. Model uncertainty, which embodies inherent pre-

diction variability, can destabilize the model and obscure its true

capacity while also offering valuable insights into its latent poten-

tial. We next delve into the manifestations and impacts of model

uncertainty and demonstrate how leveraging uncertainty can guide

the formulation of more reliable early stopping decisions.

5.1 Manifestations of Uncertainty
Uncertainty in ML arises from two primary sources: intrinsic noise

within the data and variability in model predictions stemming from

limited knowledge [1, 24]. Since data uncertainty remains a con-

stant, it is the variability in model predictions, referred to as model

uncertainty, that predominantly affects early stopping decisions.
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'𝑀!
" 𝑥 ~ 𝑁(%𝑦, 𝜎"#)𝑦 ~ 𝑁 𝑔 𝑥 , 𝜎#

Noise Bias VarianceData 
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Uncertainty

Figure 6: Decomposition of uncertainty.

For clarity and in alignment with prior research on uncertainty

in machine learning [59], we assume that model predictions follow

a normal distribution, 𝑀̂𝑡
𝛾 (x) ∼ N (ŷ, 𝜎2𝑡 ), where ŷ = E𝑀̂𝑡

𝛾 (x). Let
y = 𝑔(x) + 𝜀 be an observation corresponding to a given input x ∈
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(b) Validation loss curve

Figure 7: Manifestation of model uncertainty — (a) and (b) dis-

play inter-seed and inter-epoch uncertainty in validation losses for

three randomly selected models in ImageNet-16-120, respectively.
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Figure 8: Early-stage fluctuation and final test loss vs. model
capacity. — Correlation between the std. of inter-epoch validation

loss from the first five epochs and final test loss, with model capacity

quantified by the number of model parameters involved in NAS.

R𝑑 , perturbed by noise 𝜀 ∼ N(0, 𝜎2). Therefore, y ∼ N
(
𝑔(x), 𝜎2

)
,

where 𝑔(x) represents the ground truth, and 𝜎 represents the noise

arising from data, which is fundamentally irreducible.

Figure 6 shows the distributions of observations and model pre-

dictions for a specific x at epoch 𝑡 , illustrating uncertainty decompo-

sition. The “Bias”, quantifying the gap between ŷ and 𝑔(x), reflects
the model’s learning capacity under various training configurations

(e.g., hyperparameters, fidelity, learning algorithms). The “Variance”
represents the model’s sensitivity to training samples and encom-

passes both the model’s current learning level and the uncertainty

associated with stability. Good early stopping decisions should

primarily rely on the model’s current learning capability.

The impact of training variation manifests in two aspects: First,

different training settings, such as initialization and data batch load-

ing order, introduce variability to the learning process, enabling

models to capture diverse facets of the data and leading to different

bias and error patterns. Figure 7 (a) shows the mean and variance

of validation losses across three random seeds, highlighting this

effect. Leveraging this variability can offer deeper insight into the

model’s learning capabilities. Second, model uncertainty is evident

through substantial fluctuations in consecutive epochs, especially

in the validation set before the model fully adapts to underlying

data patterns. As demonstrated in Figure 7 (b), significant oscilla-

tions in validation losses occur during the first 100 epochs. These

fluctuations diminish as the model approaches convergence.

Furthermore, Figure 8 unveils a noteworthy pattern: models with

higher expressive capacity (i.e., larger model sizes and lower final



test losses) tend to exhibit greater early-stage fluctuations. This

stems from the fact that stronger models carry more uncertainty in

their initial stages when their knowledge has not yet aligned with

their expressive potential. In contrast, models with limited expres-

siveness converge sooner and display less uncertainty. Therefore,

making early stopping decisions at peaks of uncertainty may lead

to the premature termination of more capable models.

5.2 Implications of Uncertainty Integration
Next, we explore strategies for integrating uncertainty into early

stopping metric to aid in making informed early stopping decisions.

5.2.1 Benefits of Integrating Uncertainty. Observations from Fig-

ure 7 reveal considerable fluctuations in model predictions through-

out training. Building upon the insights from Section 4, improving

the stability of these metrics is posited to enhance the precision of

early stopping decisions. Therefore, we delve into the effect of inte-

grating uncertainty into performance metrics on HPO outcomes.

In the absence of an exact mathematical model for model’s per-

formance distribution, we opt for the simplifying assumption of a

Gaussian distribution following Example 4.2.

Example 5.1 (Uncertainty Across Random Seeds). Given the HPO

context defined in Example 4.2, we consider a scenario where each

model configuration is trained 𝑅 times with distinct random seeds.

Let
ˆ𝑓 𝑡𝑟 (𝛾𝑜 ) and ˆ𝑓 𝑡𝑟 (𝛾𝑠𝑜 ) represent the empirical risk at epoch 𝑡 for

each independent seed 𝑟 , which follow𝑁 (𝜇𝑜 , 𝜎
2

𝑜

|D | ) and𝑁 (𝜇𝑠𝑜 ,
𝜎2

𝑠𝑜

|D | ),
respectively. To exploit the inter-seed uncertainty, we introduce a

new early stopping metric𝑚𝑡𝑒 (𝛾) = 1

𝑅

∑𝑅
𝑟=1

ˆ𝑓 𝑡𝑟 (𝛾) for each hyper-

parameter 𝛾 , as an alternative to
ˆ𝑓 𝑡 (𝛾) for model ranking in Eq. 3.

𝑚𝑡𝑒 (𝛾𝑜 ) and𝑚𝑡𝑒 (𝛾𝑠𝑜 ) follow N(𝜇𝑜 ,
𝜎2

𝑜

𝑅 |D | ) and N(𝜇𝑠𝑜 ,
𝜎2

𝑠𝑜

𝑅 |D | ). Then,
the probability of an incorrect early stopping decision is:

𝑃
(
𝑚̂𝑡

𝑒 (𝛾𝑜 ) ≥ 𝑚̂𝑡
𝑒 (𝛾𝑠𝑜 )

)
= 1 − Φ

(
𝜇𝑠𝑜 − 𝜇𝑜√︃
1

𝑅 |D| (𝜎
2

𝑜 + 𝜎2

𝑠𝑜 )

)
. (7)

Remark. When models are trained under identical conditions but

with different seeds, each trial remains independent. In this con-

text, assuming that outcomes from different seeds follow the same

normal distribution is statistically justified by the Central Limit

Theorem. Averaging results across independent trials reduces vari-

ances in performance metrics, thus lowering the risk of premature

early stopping errors. However, the computational costs of multiple

training trials constrain the feasibility of this approach in practice.

Example 5.2 (Uncertainty Across Adjacent Epochs). Given the

HPO context defined in Example 4.2, consider a model with hyper-

parameter𝛾 , where the empirical risks
ˆ𝑓 𝑡 (𝛾) over a small window of

𝑊 consecutive epochs follow normal distributions with a constant

mean 𝜇 but distinct standard deviations 𝜎𝑡1 , . . . , 𝜎𝑡𝑊 . To exploit

the inter-epoch uncertainty, we introduce a new early stopping

metric, 𝑚̂𝑡𝑤 (𝛾) = 1

𝑊

∑𝑡𝑊
𝑤=𝑡1

ˆ𝑓 𝑤 (𝛾), 𝑡 = ⌊(𝑡1 + 𝑡𝑊 )/2⌋, which calcu-

lates the average empirical risk over the window𝑊 . Accordingly,

𝑚̂𝑡𝑤 (𝛾𝑜 ) and 𝑚̂𝑡𝑤 (𝛾𝑠𝑜 ) are distributed as N(𝜇𝑜 , 1

𝑊 2 |D |
∑𝑡𝑊
𝑤=𝑡1

𝜎𝑤𝑜
2)

and N(𝜇𝑠𝑜 , 1

|𝑊 2D|
∑𝑡𝑊
𝑤=𝑡1

𝜎𝑤𝑠𝑜
2), respectively. The metric 𝑚̂𝑡𝑒 (𝛾) re-

places
ˆ𝑓 𝑡 (𝛾) for model ranking, as specified in Eq. 3. Then, the

probability of an incorrect early stopping decision is:

𝑃
(
𝑚̂𝑡

𝑤 (𝛾𝑜 ) ≥ 𝑚̂𝑡
𝑤 (𝛾𝑠𝑜 )

)
= 1 − Φ

(
𝜇𝑠𝑜 − 𝜇𝑜

1

𝑊 2 |D|
∑𝑡𝑊

𝑤=𝑡1
(𝜎𝑤

𝑜
2 + 𝜎𝑤

𝑠𝑜
2 )

)
. (8)

Remark. Assuming a constant mean loss over a short epochwindow

while allowing standard deviations to vary provides a practical

approach to analyzing complex models. This simplification does not

compromise the detection of significant shifts in learning behavior.

5.2.2 Uncertainty-Integrated Metrics. Building on Examples 5.1

and 5.2, we propose two metrics that integrate uncertainty to en-

hance early stopping decisions: the ensemble averaging metric𝑚𝑒
and the window smoothing metric 𝑚𝑤 . The 𝑚𝑒 metric leverages

uncertainty across multiple training trials to improve early stop-

ping reliability. It adopts an ensemble learning strategy in which

each model is independently trained on a resampled dataset with

identical configurations but with different initialization seeds [38].

By averaging performance at the same epoch,𝑚𝑒 provides a robust

measure of model stability under varying initial conditions. We de-

note the metrics computed on the training and validation datasets

as𝑚𝑒T and𝑚𝑒V , respectively.

The𝑚𝑤 metric is designed to smooth out random fluctuations to

refine early stopping decisions. It operates on the premise that per-

formance fluctuations across neighboring epochs primarily reflect

uncertainty rather than substantial changes in model performance.

𝑚𝑤 computes the average performance over a predefined small

window of consecutive epochs, yielding a more consistent and sta-

ble representation of the model’s performance by averaging out

short-term stochastic variations. Similarly, we define𝑚𝑤T and𝑚𝑤V
for the training and validation datasets, respectively.

We first evaluate the ensemble averaging metric using three

random seeds and apply the Wilcoxon signed-rank test to compare

𝑚𝑒T with 𝑚T and 𝑚𝑒V with 𝑚V . Results from experiments on

Nas-Bench-201 and HPOBench are presented in Table 4. LCBench

is excluded due to a lack of training results from multiple seeds.

Our findings demonstrate the efficacy of the ensemble averaging

metric. First, the consistently low p-values across various budgets
and filtering ratios for both training and validation losses suggest

that the ensemble averaging approach significantly enhances the

accuracy of early stopping decisions. This confirms that incorpo-

rating ensemble-based uncertainty quantification can substantially

enhance HPO performance when training resources are sufficient.

Second, the benefits of the ensemble averaging metric tend to in-

crease with larger budgets. This indicates that the diverse training

trials complement each other in reflecting model capability and

uncertainty, thus enhancing assessments of the model’s learning

and generalization abilities.

We next evaluate the effect of the window smoothing metric.

We set the window size to 5 for Nas-Bench-201 and BNN, and 3 for

LCBench and NN. Again, we use the Wilcoxon signed-rank test to

compare𝑚𝑤T with𝑚T and𝑚𝑤V with𝑚V . Table 5 reveals signif-

icant disparities across benchmarks. In Nas-Bench-201 and BNN,

the window smoothing metric substantially improves validation

performance, evidenced by the low p-values of𝑚𝑤V compared to

𝑚V ; however, its benefit diminishes with increasing budget, align-

ing with our observation that model loss volatility decreases over

time. In contrast,𝑚𝑤T shows no significant difference from𝑚T . For



Table 4: Comparison of Ensemble Averaging Metrics and
Common Metrics Using the Wilcoxon Signed-Rank Test —
The hypotheses are shown in the “Assumption” row. A p-value
closer to zero indicates a stronger possibility that the assumption

holds. 𝑑𝑎𝑐𝑐 (𝑑𝑙𝑜𝑠𝑠 ) represents the average difference in final test ac-

curacy (loss) between the two metrics.𝑚𝑒T and𝑚𝑒V are computed

using three random seeds.

CIFAR-10 CIFAR-100 ImageNet-16-120 BNN-Protein

Assumption 𝑚𝑒T > 𝑚T 𝑚𝑒V > 𝑚V 𝑚𝑒T > 𝑚T 𝑚𝑒V > 𝑚V 𝑚𝑒T > 𝑚T 𝑚𝑒V > 𝑚V 𝑚𝑒T > 𝑚T

𝑅 = 50/2500 p 6.4𝑒−8 1.3𝑒−9 5.5𝑒−16 3.1𝑒−17 1.7𝑒−13 8.8𝑒−14 5.4𝑒−9

𝜂 = 3 𝑑𝑎𝑐𝑐/𝑙𝑜𝑠𝑠 0.031 0.228 0.103 0.391 0.135 0.330 -1.289

𝑅 = 81/5000 p 1.4𝑒−7 7.7𝑒−13 3.0𝑒−16 3.0𝑒−17 5.0𝑒−17 2.5𝑒−23 6.7𝑒−148

𝜂 = 3 𝑑𝑎𝑐𝑐/𝑙𝑜𝑠𝑠 0.040 0.268 0.092 0.419 0.157 0.496 -1.463

𝑅 = 160/7500 p 1.5𝑒−21 9.7𝑒−13 1.3𝑒−16 2.2𝑒−20 5.3𝑒−23 3.7𝑒−58 6.0𝑒−48

𝜂 = 1.33 𝑑𝑎𝑐𝑐/𝑙𝑜𝑠𝑠 0.103 0.125 0.120 0.455 0.197 0.494 -1.248

𝑅 = 180/10000 p 4.9𝑒−40 2.2𝑒−14 4.8𝑒−13 0.094 4.0𝑒−26 1.4𝑒−41 3.9𝑒−120

𝜂 = 1.33 𝑑𝑎𝑐𝑐/𝑙𝑜𝑠𝑠 0.157 0.123 0.116 0.046 0.224 0.370 -3.704

NN-Higgs NN-Adult BNN-Boston BNN-Protein

Assumption 𝑚𝑒T > 𝑚T 𝑚𝑒V > 𝑚V 𝑚𝑒T > 𝑚T 𝑚𝑒V > 𝑚V 𝑚𝑒T > 𝑚T 𝑚𝑒V > 𝑚V 𝑚𝑒V > 𝑚V

𝑅 = 40/2500 𝑝 2.1𝑒−26 3.3𝑒−24 3.0𝑒−45 1.3𝑒−45 1.2𝑒−120 1.2𝑒−156 1.0𝑒−34

𝜂 = 3 𝑑𝑎𝑐𝑐/𝑙𝑜𝑠𝑠 0.002 0.002 0.002 0.001 -2.402 -3.774 -1.159

𝑅 = 80/5000 𝑝 1.3𝑒−26 1.0𝑒−41 1.0𝑒−54 1.3𝑒−50 9.7𝑒−88 1.0𝑒−133 5.0𝑒−137

𝜂 = 3 𝑑𝑎𝑐𝑐/𝑙𝑜𝑠𝑠 0.002 0.003 0.002 0.002 -0.284 -3.197 -3.060

𝑅 = 120/7500 𝑝 7.5𝑒−28 4.9𝑒−41 3.8𝑒−11 3.3𝑒−119 1.8𝑒−70 3.5𝑒−155 9.8𝑒−125

𝜂 = 1.33 𝑑𝑎𝑐𝑐/𝑙𝑜𝑠𝑠 0.001 0.002 0.001 0.003 -1.458 -4.730 -3.049

𝑅 = 160/10000 𝑝 2.1𝑒−42 1.7𝑒−118 4.4𝑒−8 7.6𝑒−107 1.3𝑒−86 2.1𝑒−154 1.1𝑒−127

𝜂 = 1.33 𝑑𝑎𝑐𝑐/𝑙𝑜𝑠𝑠 0.001 0.004 0.002 1.9𝑒−4 -2.729 -4.028 -3.414

LCBench and NN, however, window smoothing metrics generally

perform worse than the conventional loss metrics, likely due to

rapid convergence and significant loss reductions between epochs

that deviate from the assumptions outlined in Example 5.2. These

findings motivate further exploration into the variability of model

performance throughout training to refine early stopping metrics.

The analysis leads to the following insight:

Insight 3: leveraging uncertainty across different seeds and
consecutive epochs can enhance the reliability of early stop-
pingmetrics for HPO. Specifically, harnessing inter-seed uncer-
tainty consistently yields superior outcomes, while exploiting
inter-epochuncertainty demandsmore nuanced strategies and
a deeper comprehension of the model’s learning trajectory.

6 TRAINING STAGES AND EARLY STOPPING
The above analysis shows that employing different early stopping

metrics at various training stages can lead to distinct outcomes.

Figure 4 compares the effects of using training versus validation

losses under different computational budgets, while Figure 7 sheds

light on performance fluctuations throughout training. These obser-

vations underscore the necessity of a comprehensive understanding

of model behavior in selecting effective early stopping metrics.

6.1 Evolution of Model Performance
In Section 4.1, we presented performance trends of various HPO

tasks across their training cycles, offering initial insights into their

complexity and effectiveness. We now extend this analysis through

a statistical examination of their distinct training stages.

6.1.1 Derivative of Losses. We calculate the derivatives of losses

for all model configurations, as shown in Figure 9. The derivative

quantifies performance changes between adjacent epochs.

Table 5: Comparison ofWindow SmoothingMetrics andCom-
mon Metrics Using the Wilcoxon Signed-Rank Test — The

hypotheses are shown in the “Assumption” row. A p-value closer to
zero indicates a stronger possibility that the assumption holds. 𝑑𝑎𝑐𝑐
(𝑑𝑙𝑜𝑠𝑠 ) represents the average difference in final test accuracy (loss)

between two metrics. The window size is set to 5 for Nas-Bench-201

and BNN, and 3 for LCBench and NN.

Nas-Bench-201 CIFAR-10 CIFAR-100 ImageNet-16-120

Assumption 𝑚𝑤T > 𝑚T 𝑚𝑤V > 𝑚V 𝑚𝑤T > 𝑚T 𝑚𝑤V > 𝑚V 𝑚𝑤T > 𝑚T 𝑚𝑤V > 𝑚V

𝑅 = 50 p 0.482 1.1𝑒−16 0.499 3.2𝑒−15 0.417 1.3𝑒−14

𝜂 = 3 𝑑𝑎𝑐𝑐 0.0 0.331 0.0 0.398 0.001 0.386

𝑅 = 81 p 0.540 1.1𝑒−23 0.043 7.6𝑒−17 0.517 9.6𝑒−27

𝜂 = 3 𝑑𝑎𝑐𝑐 8.6𝑒−4 0.381 0.012 0.447 1.3𝑒−4 0.532

𝑅 = 160 p 0.311 0.357 3.9𝑒−4 5.7𝑒−26 0.187 2.7𝑒−28

𝜂 = 1.33 𝑑𝑎𝑐𝑐 0.004 0.043 0.033 0.548 0.004 0.326

𝑅 = 180 p 1.4𝑒−17 5.1𝑒−6 5.0𝑒−3 3.5𝑒−7 0.968 7.1𝑒−17

𝜂 = 1.33 𝑑𝑎𝑐𝑐 0.098 0.077 0.031 0.214 -0.011 0.209

LCBench / NN Fashion-MNIST Volkert NN-Higgs

Assumption 𝑚𝑤T > 𝑚T 𝑚𝑤V > 𝑚V 𝑚𝑤T > 𝑚T 𝑚𝑤V > 𝑚V 𝑚𝑤T > 𝑚T 𝑚𝑤V > 𝑚V

𝑅 = 9/40 p 0.999 1.0 1.0 0.998 1.0 1.0

𝜂 = 3 𝑑𝑎𝑐𝑐 −5.0𝑒−4 −6.8𝑒−4 -0.173 -0.076 −3.0𝑒−3 −3.1𝑒−3
𝑅 = 15/80 p 1.0 0.998 0.958 0.504 1.0 0.999

𝜂 = 3 𝑑𝑎𝑐𝑐 −3.4𝑒−4 −3.3𝑒−4 -0.059 -0.001 −2.2𝑒−3 −1.4𝑒−3
𝑅 = 30/120 p 0.196 0.942 0.005 0.863 0.210 0.815

𝜂 = 1.33 𝑑𝑎𝑐𝑐 9.6𝑒−5 −7.4𝑒−5 0.0074 -0.015 −2.5𝑒−3 −4.4𝑒−3
𝑅 = 45/160 p 0.973 0.800 6.2𝑒−12 7.1𝑒−5 0.624 0.918

𝜂 = 1.33 𝑑𝑎𝑐𝑐 −5.9𝑒−5 −2.6𝑒−5 0.205 0.092 −2.0𝑒−3 −1.5𝑒−3

NN / BNN NN-Adult BNN-Boston BNN-Protein

Assumption 𝑚𝑤T > 𝑚T 𝑚𝑤V > 𝑚V 𝑚𝑤T > 𝑚T 𝑚𝑤V > 𝑚V 𝑚𝑤T > 𝑚T 𝑚𝑤V > 𝑚V

𝑅 = 40/2500 p 0.999 0.999 1.2𝑒−5 3.7𝑒−10 0.004 4.0𝑒−4

𝜂 = 3 𝑑𝑎𝑐𝑐/𝑙𝑜𝑠𝑠 −5.8𝑒−4 −5.9𝑒−4 -0.709 -0.326 -0.103 -0.220

𝑅 = 80/5000 p 0.992 0.998 0.425 2.6𝑒−4 0.449 0.042

𝜂 = 3 𝑑𝑎𝑐𝑐/𝑙𝑜𝑠𝑠 −2.3𝑒−4 −3.5𝑒−4 0.015 -0.601 -0.017 -1.534

𝑅 = 120/7500 p 0.999 9.1𝑒−27 0.356 3.6𝑒−4 0.552 0.033

𝜂 = 1.33 𝑑𝑎𝑐𝑐/𝑙𝑜𝑠𝑠 −2.0𝑒−4 1.2𝑒−3 2.090 -3.063 0.014 -0.020

𝑅 = 160/10000 p 1.9𝑒−10 5.0𝑒−5 0.099 2.2𝑒−7 0.683 3.2𝑒−5

𝜂 = 1.33 𝑑𝑎𝑐𝑐/𝑙𝑜𝑠𝑠 5.0𝑒−4 3.4𝑒−4 -0.053 -4.182 0.009 -0.088

Key observations from Figure 9 include: First, except for BNN,

the mean derivatives for all tasks are consistently negative. The

volatility observed in BNN stems from its special training tech-

nique of modeling probability distributions; nonetheless, its loss

is gradually stabilizing. This indicates an overall improvement in

performance, suggesting that training processes are effective. Sec-

ond, in the later training stages, both training and validation loss

derivatives converge toward zero, with few significant decreases in

training loss or increases in validation loss. This suggests minimal

overfitting and supports the reliability of final test performance

as robust HPO objectives. Third, all benchmarks exhibit notable

fluctuations in validation loss derivatives, with larger shaded ar-

eas indicating higher instability. This instability undermines the

reliability of early stopping decisions based on validation loss.

We employ the ruptures toolkit [44], which specializes in change-

point detection, to analyze model convergence. ruptures is adept
at handling non-stationary signals and is particularly effective

for identifying phase transitions in model losses. We utilize its

RBF kernel-based cost function for robust detection. The identified

change points are marked with red lines in Figure 9.

Limiting the detection to two change points, ruptures success-
fully pinpoints critical transitions in model performance. The first

change point marks a shift from rapid to slower learning, and the

second indicates stabilization as loss derivatives approach zero. In

most HPO tasks–except Volkert–training losses stabilize before
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Figure 9: Derivative of Losses — The derivatives of training and

validation losses over epochs. The solid line represents the mean

loss across model configurations, while the shaded area denotes the

range of one std. Negative derivatives suggest model improvement.

Red lines mark transition points identified using ruptures.

validation losses. Specifically, in Nas-Bench-201, convergence oc-

curs around epochs 110–120 for training losses and 160–185 for

validation losses. In contrast, for LCBench, NN, and BNN, the con-

vergence points for both losses are closely aligned (15–30, 100–120,

and 4500–5000 epochs, respectively), indicating more synchronized

stabilization compared to Nas-Bench-201.

6.1.2 Uncertainty in Losses. The derivative of loss serves as an

indicator of model learning progress. To further assess volatility

changes, we calculate the standard deviations (std.) of losses across

specific epoch windows, as shown in Figure 10. A std. value ap-

proaching zero suggests that model performance is stabilizing.

Figure 10 reveals several observations: First, the training loss

std. is generally smoother than validation loss std., indicating less

variability. Validation losses exhibit pronounced fluctuations, as

highlighted by both solid lines and shaded areas, particularly in

Nas-Bench-201. Although both training and validation std. values in

BNN are high, the training std. remains consistently lower. Second,

as training progresses, std. values gradually decrease, reflecting

reduced loss volatility. Third, in Nas-Bench-201 and Boston from

HPOBench, the validation loss std. initially increases before de-

clining. This pattern reflects models’ adaptation to complex tasks.

Early in training, the model adjusts from a basic state, resulting in

increased fluctuations in validation losses. As training progresses,

the model stabilizes and converges to optimal parameters, leading

to more consistent performance and reduced std. values.

To further delineate these trends, we apply ruptures with a linear

cost function to identify change points in the std. curves. For Nas-

Bench-201, these change points effectively segment the learning
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Figure 10: Standard Deviation of Losses across Consecutive
Epochs — A window size of 5 is used for Nas-Bench-201 and BNN,

while a size of 3 is used for LCBench and NN. The solid line repre-

sents the average std. of loss across all model configurations. The

shaded area denotes the range of max. and min. values observed.

Red lines mark transition points identified using ruptures.

trajectory into phases of rising, falling, and stabilizing std., offering

structured insights into the model’s performance evolution.

6.1.3 Learning Stage Division. Our analysis of the derivatives and
stds. of losses reveals four distinct stages in model training:

(1) Initial Exploration. In this stage, the std. of validation loss

increases, reflecting the model’s exploratory adjustments and

significant instability in generalization performance.

(2) Optimization. The second stage shows a decreasing trend in

both validation and training losses and their stds. This suggests

that models are refining their parameters, leading to reduced

uncertainty and more stable, reliable behavior.

(3) Convergence. Training and validation losses, along with their

stds, stabilize at a plateau, indicating that the models’ learning

and generalization capabilities have reached optimal levels.

(4) Potential Overfitting. This stage is marked by a decline in

training loss coupled with an increase in validation loss. In our

study, however, benchmarks are configured with a maximum

number of epochs to prevent overfitting.

Table 6 details the epoch ranges for the benchmarks as deter-

mined by change-point detection. In our early stopping setups for

Nas-Bench-201 and BNN-Boston, when 𝑅 ≤ 81 and 𝑅 ≤ 5000 with

𝜂 = 3, the early stopping points fall within stage 1. For 𝑅 ≥ 160

and 𝑅 ≥ 7500 with 𝜂 = 1.33, the early stopping points extend into

stages 2 and 3. In LCBench, NN, and BNN-Protein, early stopping

points for 𝑅 ≤ 15, 𝑅 ≤ 80, and 𝑅 ≤ 5000 with 𝜂 = 3 are confined

to stage 2, while for 𝑅 ≥ 30, 𝑅 ≥ 120, and 𝑅 ≥ 7500 with 𝜂 = 1.33,

they reach stage 3. This stage division elucidates why, as shown in

Table 3, the benefit of the training metric diminishes under larger



budget settings. Notably, for LCBench and NN, the validation met-

rics at𝑅 ≥ 30 and𝑅 ≥ 120 significantly outperform trainingmetrics.

This systematic stage division provides a structured framework for

analysis and guides the design of subsequent experiments.

Table 6: Epoch Range of Training Stages — Nas-Bench-201 and

Boston encompasses all three stages, while others start from stage

2. Stage 4 is omitted due to the absence of overfitting in these tasks.

CIFAR-10 CIFAR-100 ImageNet-16-120 BNN-Boston

Stage 1 1-70 1-95 1-95 1-2385

Stage 2 70-180 95-175 95-165 2385-5500

Stage 3 180-200 175-200 165-200 5500-10000

Fashion-MNIST Volkert NN-Higgs NN-Adult BNN-Protein

Stage 2 1-15 1-15 1-75 1-75 1-5000

Stage 3 15-50 15-50 75-243 75-243 5000-10000

6.2 Stage-Adaptive Early Stopping
We next investigate the integration of stage information into early

stopping metrics to improve decision-making. To achieve this, we

develop and evaluate a set of stage-adaptive metrics.

6.2.1 Stage-Adaptive Metrics. We introduce a stage-adaptivemetric

𝑚T/V that refines the tuning process by selectively using training

or validation loss at different early stopping points. Due to the high

uncertainty associated with validation loss in stage 1,𝑚T/V ini-

tially relies on training loss. As training progresses into later stages,

it transitions to validation loss. The metrics allowing this transition

from stages 2 and 3 are denoted as𝑚
(2−3)
T/V and𝑚

(3)
T/V , respectively.

Furthermore, we explore how the integration of uncertainty with

stage adaptiveness can improve early stopping decisions. We also

introduce a stage-adaptive ensemble averaging metric𝑚𝑒T/V and

a stage-adaptive window smoothing metric𝑚𝑤T/V to demonstrate

their efficacy in this context.

6.2.2 Applying Stage-Adaptive Metrics in Early Stop. We begin with

a comparison of the stage-adaptive metrics against conventional

metrics, as presented in Table 7, excluding setups where early stop-

ping points occur solely in stage 1. For benchmarks that do not

include stage 1, we focus on comparing𝑚
(3)
T/V , which starts using

validation loss from stage 3, with𝑚V , which starts from stage 2.

The results lead to a key conclusion: initiating early stopping

with validation loss from stage 2 is less effective than consistently

using training loss, while switching to validation loss in stage 3

offers some advantages. Specifically, the near 1 p-values when com-

paring𝑚
(2−3)
T/V and𝑚T in Nas-Bench-201 and BNN-Boston suggest

that transitioning to validation loss at stage 2 adversely affects

early stopping accuracy, particularly in low-budget settings where

most early stopping points fall in stage 2. Nonetheless,𝑚
(2−3)
T/V sig-

nificantly outperforms 𝑚V , confirming the benefit of retaining

training loss in stage 1. Further examination shows that 𝑚
(3)
T/V

generally exceeds the performance of𝑚T . In Nas-Bench-201, the

similarity between𝑚
(3)
T/V and𝑚T is attributed to a late triggering

of stage 3, where most early stopping points are concentrated in

stages 1 and 2, leaving only a small subset of configurations for

stage 3 evaluation. However,𝑚
(3)
T/V significantly outperforms𝑚V

and𝑚
(2−3)
T/V , reinforcing the advantages of using training loss in

stage 2. In LCBench and NN, the benefits of stage adaptiveness

are less pronounced but still observable. As shown in Table 3, the

impact of validation loss on guiding early stopping becomes more

evident at larger budgets. This is because models in LCBench and

NN converge quickly, revealing their generalization ability earlier.

Consequently, metrics that switch to validation loss from stage 3

onward exhibit improved performance over those relying solely on

training loss, thus enhancing the reliability of final HPO outcomes.

Next, we integrate the uncertainty metrics discussed in Sec-

tion 5.2 with stage-adaptive strategies. First, we consider the stage-

adaptive ensemble averaging metric𝑚𝑒T/V . Previous experiments

have demonstrated the advantages of the ensemble averaging met-

ric 𝑚𝑒 . Table 8 further shows that switching to validation loss

from stage 3 significantly enhances performance compared to𝑚𝑒 .

Second, we explore the stage-adaptive window smoothing metric

𝑚𝑤T/V . Table 9 demonstrates that applying window smoothing

to the stage-adaptive metrics consistently yields significant bene-

fits across various benchmarks and budget settings. By comparing

Tables 5, 7, and 9, we find that the combined approach is more

effective in optimizing early stopping outcomes than either tech-

nique used separately. Overall, when metrics accurately reflect

the characteristics of the training stages, introducing uncertainty,

such as ensemble averaging and window smoothing techniques,

significantly enhances the performance of early stopping.

6.2.3 Analysis of the Most Effective Budget Setting. We further ex-

tend our analysis to explore the most effective budget settings for

the stage-adaptive window smoothing metric, which has thus far

been identified as the most effective metric. Figure 11 shows repre-

sentative results across four benchmarks, tracking the performance

regret (i.e., the difference between HPO outcomes and optimal can-

didates) as the budget increases. Each budget setting was evaluated

over 1,000 random repetitions. The weaker vertical dashed lines

in Figure 11 mark the minimum budgets required for increasing

numbers of early stopping points to appear at different stages; for

example, the second green dashed line marks the smallest budget

where two early stopping points occur in stage 2.

We draw several conclusions from Figure 11. First, HPO perfor-

mance improves with increased budget, as evidenced by reduced

mean regrets, narrower shaded areas, and higher probabilities of

identifying optimal solutions. Second, the probability of finding

optimal solutions in ImageNet is notably lower than in other bench-

marks, likely due to the greater complexity of Nas-Bench-201, where

performance differences manifest later; thus, more advanced HPO

strategies are required. Third, HPO performance stabilizes once

early stopping points appear in stage 3, particularly in Nas-Bench-

201 and BNN, but further budget increases yield diminishing returns.

This suggests a single early stopping point in stage 3 is adequate. If a

performance gap of less than 4% is acceptable (or 7% for Nas-Bench-

201), ensuring early stopping points occur in stage 2 is sufficient.

The analysis leads to the following insight:

Insight 4: leveraging distinct stages of model training can
enhance early stopping effectiveness. Adapting to the stages



Table 7: Comparison of Stage-Adaptive Metrics and CommonMetrics Using theWilcoxon Signed-Rank Test — 𝑑𝑎𝑐𝑐 (𝑑𝑙𝑜𝑠𝑠 ) denotes
the mean disparity in final test accuracy (loss) between two metrics, with “-” indicating no difference in outcomes.

Nas-Bench-201 / HPOBench CIFAR-10 CIFAR-100 ImageNet-16-120 BNN-Protein

Assumption 𝑚
(2−3)
T/V > 𝑚T 𝑚

(2−3)
T/V > 𝑚V 𝑚

(3)
T/V > 𝑚T 𝑚

(3)
T/V > 𝑚V 𝑚

(2−3)
T/V > 𝑚T 𝑚

(2−3)
T/V > 𝑚V 𝑚

(3)
T/V > 𝑚T 𝑚

(3)
T/V > 𝑚V 𝑚

(2−3)
T/V > 𝑚T 𝑚

(2−3)
T/V > 𝑚V 𝑚

(3)
T/V > 𝑚T 𝑚

(3)
T/V > 𝑚V 𝑚

(3)
T/V > 𝑚T

𝑅 = 160/7500 p 1.0 9.5𝑒−7 - 1.8𝑒−40 1.0 1.5𝑒−15 - 8.9𝑒−153 0.999 5.6𝑒−10 - 2.9𝑒−27 1.0

𝜂 = 1.33 𝑑𝑎𝑐𝑐/𝑙𝑜𝑠𝑠 -0.192 0.088 0.0 0.279 -2.161 0.315 0.0 2.476 -0.208 0.139 0.0 0.348 0.014

𝑅 = 180/10000 p 1.0 9.2𝑒−14 0.683 8.0𝑒−24 1.0 3.2𝑒−5 0.339 2.8𝑒−11 0.991 3.1𝑒−5 0.710 4.1𝑒−5 0.999

𝜂 = 1.33 𝑑𝑎𝑐𝑐/𝑙𝑜𝑠𝑠 -0.164 0.113 -0.015 0.162 -2.955 0.128 -0.029 0.283 -0.078 0.087 -0.073 0.092 0.010

LCBench / HPOBench Fashion-MNIST Volkert NN-Higgs NN-Adult BNN-Boston BNN-Protein

Assumption 𝑚
(3)
T/V > 𝑚T 𝑚

(3)
T/V > 𝑚V 𝑚

(3)
T/V > 𝑚T 𝑚

(3)
T/V > 𝑚V 𝑚

(3)
T/V > 𝑚T 𝑚

(3)
T/V > 𝑚V 𝑚

(3)
T/V > 𝑚T 𝑚

(3)
T/V > 𝑚V 𝑚

(2−3)
T/V > 𝑚T 𝑚

(2−3)
T/V > 𝑚V 𝑚

(3)
T/V > 𝑚T 𝑚

(3)
T/V > 𝑚V 𝑚

(3)
T/V > 𝑚V

𝑅 = 30/120/7500 p 3.8𝑒−5 0.495 1.7𝑒−5 0.308 0.248 0.086 6.4𝑒−6 1.6𝑒−6 1.0 6.3𝑒−18 - 1.3𝑒−37 5.6𝑒−4

𝜂 = 1.33 𝑑𝑎𝑐𝑐/𝑙𝑜𝑠𝑠 5.7𝑒−4 1.4𝑒−4 0.189 5.4𝑒−5 0.001 4.549 3.4𝑒−4 2.6𝑒−4 63.128 -15.882 -0.311 -32,638 −3.5𝑒−4
𝑅 = 45/160/10000 p 1.4𝑒−5 0.795 0.502 0.279 9.3𝑒−5 0.002 1.2𝑒−44 0.011 1.2𝑒−12 5.1𝑒−19 1.4𝑒−14 1.8𝑒−18 0.005

𝜂 = 1.33 𝑑𝑎𝑐𝑐/𝑙𝑜𝑠𝑠 5.6𝑒−4 9.9𝑒−5 2.5𝑒−4 3.7𝑒−5 0.031 1.9𝑒−4 0.001 2.0𝑒−4 -12.871 -22.252 -12.909 -22.290 -0.389
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Figure 11: Performance Regret across Budgets. —The solid blue line shows mean regret. The dark and light blue areas indicate one std.

and max. values, respectively. Strong vertical dashed lines mark the stage division points. Weaker lines mark the min. budgets required for

increasing numbers of early stopping points in each stage. The solid red line denotes the probability of HPO identifying optimal solutions.

Table 8: Effect of Combining Stage-Adaptive Strategy with
Ensemble Averaging — Using Wilcoxon Signed-Rank Test. Hy-

potheses are shown in the “Assumption” row. “-” indicates no differ-

ence in outcomes. Metrics are calculated with three random seeds.

CIFAR-10 CIFAR-100 ImageNet-16-120 BNN-Protein

Assumption 𝑚
(3)
𝑒T/V > 𝑚𝑒T 𝑚

(3)
𝑒T/V > 𝑚𝑒V 𝑚

(3)
𝑒T/V > 𝑚𝑒T 𝑚

(3)
𝑒T/V > 𝑚𝑒V 𝑚

(3)
𝑒T/V > 𝑚𝑒T 𝑚

(3)
𝑒T/V > 𝑚𝑒V 𝑚

(3)
𝑒T/V > 𝑚𝑒T

𝑅 = 160/7500 p - 3.0𝑒−26 - 1.4𝑒−133 - 0.012 7.8𝑒−4

𝜂 = 1.33 𝑑𝑎𝑐𝑐/𝑙𝑜𝑠𝑠 0.0 0.158 0.0 1.839 0.0 0.044 -1.693

𝑅 = 180/10000 p 3.8𝑒−39 6.0𝑒−59 1.6𝑒−151 7.3𝑒−157 0.001 0.002 8.9𝑒−3

𝜂 = 1.33 𝑑𝑎𝑐𝑐/𝑙𝑜𝑠𝑠 0.181 0.253 2.775 2.938 0.072 0.068 -0.289

NN-Higgs NN-Adult BNN-Boston BNN-Protein

Assumption 𝑚
(3)
𝑒T/V > 𝑚𝑒T 𝑚

(3)
𝑒T/V > 𝑚𝑒V 𝑚

(3)
𝑒T/V > 𝑚𝑒T 𝑚

(3)
𝑒T/V > 𝑚𝑒V 𝑚

(3)
𝑒T/V > 𝑚𝑒T 𝑚

(3)
𝑒T/V > 𝑚𝑒V 𝑚

(3)
𝑒T/V > 𝑚𝑒V

𝑅 = 120/7500 p 6.0𝑒−7 0.058 7.5𝑒−3 0.014 1.6𝑒−36 1.9𝑒−3 2.8𝑒−3

𝜂 = 1.33 𝑑𝑎𝑐𝑐/𝑙𝑜𝑠𝑠 5.5𝑒−4 4.0𝑒−5 0.002 9.4𝑒−5 -0.629 -0.054 -0.493

𝑅 = 160/10000 p 8.3𝑒−3 0.337 - 0.184 0.065 0.150 2.1𝑒−4

𝜂 = 1.33 𝑑𝑎𝑐𝑐/𝑙𝑜𝑠𝑠 4.0𝑒−4 4.5𝑒−6 0.0 2.4𝑒−5 -0.595 -0.384 -0.345

Table 9: Effect of Combining Stage-Adaptive Strategy with
Window Smoothing — Using Wilcoxon Signed-Rank Test. Hy-

potheses are shown in the “Assumption” row. The window size is

set to 5 for Nas-Bench-201 and BNN, and 3 for LCBench and NN.

CIFAR-10 CIFAR-100 ImageNet-16-120

Assumption 𝑚
(2−3)
𝑤T/V > 𝑚

(2−3)
T/V 𝑚

(3)
𝑤T/V > 𝑚

(3)
T/V 𝑚

(2−3)
𝑤T/V > 𝑚

(2−3)
T/V 𝑚

(3)
𝑤T/V > 𝑚

(3)
T/V 𝑚

(2−3)
𝑤T/V > 𝑚

(2−3)
T/V 𝑚

(3)
𝑤T/V > 𝑚

(3)
T/V

𝑅 = 160 p 0.239 0.311 1.7𝑒−12 3.9𝑒−4 8.3𝑒−23 0.187

𝜂 = 1.33 𝑑𝑎𝑐𝑐 0.031 0.004 0.379 0.033 0.233 0.004

𝑅 = 180 p 0.041 0.001 4.3𝑒−10 2.7𝑒−8 1.0𝑒−13 5.2𝑒−14

𝜂 = 1.33 𝑑𝑎𝑐𝑐 0.023 0.024 0.269 0.226 0.171 0.164

Fashion-MNIST Volkert NN-Higgs NN-Adult BNN-Boston BNN-Protein

Assumption 𝑚
(3)
𝑤T/V > 𝑚

(3)
T/V 𝑚

(3)
𝑤T/V > 𝑚

(3)
T/V 𝑚

(3)
𝑤T/V > 𝑚

(3)
T/V 𝑚

(3)
𝑤T/V > 𝑚

(3)
T/V 𝑚

(3)
𝑤T/V > 𝑚

(3)
T/V 𝑚

(3)
𝑤T/V > 𝑚

(3)
T/V

𝑅 = 30/120/7500 p 0.729 0.229 0.823 3.8𝑒−13 0.046 3.8𝑒−3

𝜂 = 1.33 𝑑𝑎𝑐𝑐/𝑙𝑜𝑠𝑠 7.0𝑒−6 0.024 6.3𝑒−3 8.8𝑒−4 -1.087 -0.103

𝑅 = 45/160/10000 p 0.189 2.0𝑒−21 0.624 0.018 4.3𝑒−4 7.8𝑒−4

𝜂 = 1.33 𝑑𝑎𝑐𝑐/𝑙𝑜𝑠𝑠 1𝑒−4 0.351 1.4𝑒−3 9.8𝑒−4 -1.048 −4.2𝑒−5

and integrating uncertainty into early stopping metrics can
amplify the benefits. Ensuring early stopping in stage 3 is
optimal, while additional budget leads to diminishing returns.

7 DISCUSSION AND FUTUREWORK
This paper presents the first known systematic study on early stop-

ping metrics in HPO, and introduces model uncertainty into this

context. Our study yields several guidelines for metric selection

that benefit both users and HPO tools: (i) utilize training loss for

tasks with slow convergence; (ii) capture uncertainty across dif-

ferent training trials and neighboring epochs; (iii) identify model

training stages and select metrics based on uncertainty levels; and

(iv) integrate stage adaptation and uncertainty into metric design.

Our findings offer practical guidance for future HPO research. Po-

tential directions include developing precise techniques for charac-

terizing model uncertainty and training stages, exploring dynamic

metric-switching frameworks, and integrating uncertainty as a sec-

ondary optimization objective. We also advocate for task-specific

early stopping metrics tailored to various datasets and model ar-

chitectures, which necessitates dedicated, in-depth studies. Such

efforts are expected to yield deeper insights into model selection

and budget allocation in HPO.
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