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Jiesong Liu
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LLM Inference Optimization

• Googles infrastructure optimizations show that a 1% speedup
in inference can save millions.

• Speculative Decoding breaks the autoregressive nature of
LLMs and allows execution in parallel, by first running
inference with a smaller LLM to generate the next γ tokens,
and verifying those tokens using the large LLM.

• Choosing the best speculation window length, γ, and the best
draft model to use is crucial for unlocking the potential of
speculative decoding.

Jiesong Liu Computer Science Department, North Carolina State University
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Design

• Introduce on-the-fly adaptive speculation, a drop-in solution
that adapts speculative decoding at runtime without
ahead-of-time training.

GEMM validation
γ=5

On-the-fly γAdaptation

Reinforcement Learning Online Model

Finite State Machine History Cache

Green : Accepted tokens Blue : Resampled tokens Red : Rejected tokens Grey : Pending validation

γ=6 γ=5 γ=4 γ=3 γ=4 γ=9 γ=3
[START] japan ’ s benchmark in late morning trading .bond nikkei 22 , 5 index rose 22.6 orpoints69. , , 01. 5percent , to 10 , 98 5 9 . 79. [END]

Draft Model Scheduler

Extract features

Check
conditions

Input 
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!"
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Figure 1: Our on-the-fly adaptive speculation framework. When a prompt
arrives, our scheduler directs it to the draft model Mq. During
speculation, our framework automatically adapts the right speculation
window size γ. The speculation is then validated by the target model Mp.
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Online window size optimization

Definition (formulating objective)
Let aq represent the latency of generating one token by the draft
model, and bp(γ) represent the latency of a verification step with
window size γ. For t = 1, 2, · · · , let Acc(xt |X<t) be the accuracy
of the speculation of a single token given the current context
X<t = {x1, · · · , xt−1}. The window size γ for the current
speculation step can be determined by optimizing the objective

G = max
γ

1 − Acc(xt |X<t)
γ+1

(1 − Acc(xt |X<t))(γaq + bp(γ))
. (1)

We estimate Acc(xt |X<t) as∑
j V (γ(j),X<tj )∑

j V (γ(j),X<tj ) +
∑

j 1(V (γ(j),X<tj ) < γ(j)) (2)

where 1(·) is the indicator function.Jiesong Liu Computer Science Department, North Carolina State University
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Results

Table 1: Evaluation of adaptive window size selection. SPS denotes the throughput improvement our method
achieves over the original speculative decoding. ARS denotes improvements over the default LLMs without
speculative decoding. (“-" for not-runnable cases due to memory limit)

Model Pairing Dataset A100 V100 4090

SPS ARS SPS ARS SPS ARS

LLaMA 70B/7B finance-alpaca 6.43% 2.11× - - - -
LLaMA 70B/13B finance-alpaca 4.89% 1.90× - - - -
BLOOM 7B/560M finance-alpaca 4.28% 1.05× 7.69% 1.15× 3.70% 1.22×
BLOOM 7B/1B1 finance-alpaca 4.36% 1.04× 3.20% 1.15× 3.29% 1.17×
OPT 13B/125M finance-alpaca 4.82% 2.32× 3.41% 3.4× - -
Dolly 12B/3B finance-alpaca 9.11% 1.03× - - - -

LLaMA 70B/7B humaneval 10.35% 2.41× - - - -
LLaMA 70B/13B humaneval 8.53% 2.23× - - - -
BLOOM 7B/560M humaneval 8.14% 1.04× 2.51% 1.09× 3.09% 1.25×
BLOOM 7B/1B1 humaneval 4.03% 1.1× 3.57% 1.16× 3.51% 1.3×
OPT 13B/125M humaneval 11.40% 2.29× 2.15% 3.34× - -
Dolly 12B/3B humaneval 15.20% 1.07× - - - -

LLaMA 70B/7B gsm8k 7.13% 2.28× - - - -
LLaMA 70B/13B gsm8k 9.66% 2.08× - - - -
BLOOM 7B/560M gsm8k 15.03% 1.× 2.52% 1.01× 4.84% 1.18×
BLOOM 7B/1B1 gsm8k 10.70% 1.× 0.77% 1.02× 1.97% 1.19×
OPT 13B/125M gsm8k 5.95% 2.24× 10.52% 3.36× - -
Dolly 12B/3B gsm8k 16.92% 1.06× - - - -

LLaMA 70B/7B xsum 2.94% 1.73× - - - -
LLaMA 70B/13B xsum 0.14% 1.5× - - - -
BLOOM 7B/560M xsum 77.50% 1.× 49.30% 1.× 54.63% 1.×
BLOOM 7B/1B1 xsum 70.91% 1.× 42.94% 1.× 54.17% 1.×
OPT 13B/125M xsum 10.64% 1.02× 7.91% 2.43× - -

Jiesong Liu Computer Science Department, North Carolina State University
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Results
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Figure 2: Detailed experimental results of different adaptive methods.
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Background

• Microcontrollers are small, low-cost or energy-efficient devices.
• Demands for DNNs on microcontrollers keep growing for

reasons of energy-saving and privacy concerns.
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Background
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Figure 3: Transient redundancy elimination-based convolution (TREC)
Method (for Inference).
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Design
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Figure 4: Architecture design of TREC. "⊗" denotes matrix
multiplication.
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Design
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Figure 5: Kernel Reuse Technique.
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Design
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Figure 6: Two-step Stack Technique.
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Result

Table 2: End-to-end performance and accuracy comparison.

Target(s) Convolution Methods CifarNet ZfNet SqueezeNet SqueezeNet (Bypass)

STM32F469NI Latency (ms)-CMSIS Conv 217.32 3557.32 1639.51 1998.86
Latency (ms)-Deep reuse 154.44 814.03 — —
Latency (ms)-TREC 153.92 814.01 327.9 543.71
Speedup-TREC vs. CMSIS Conv. 1.412× 4.37× 4.98× 3.68×

STM32F746ZG Latency (ms)-CMSIS Conv 120.62 1758.73 894.16 1152.46
Latency (ms)-Deep reuse 98.44 525.03 — —
Latency (ms)-TREC 97.79 524.3 181.49 274.2
Speedup-TREC vs. CMSIS Conv. 1.23× 3.35× 4.93× 4.20×

Both Accuracy (%)-CMSIS Conv. 78.2 80.1 83.5 85.6
Accuracy (%)-Deep reuse 73.2 ∼ 76.1 72.5 ∼ 76.6 79.8 ∼ 81.9 80.5 ∼ 83.1
Accuracy (%)-TREC 76.5 78.9 83 85.3

Jiesong Liu Computer Science Department, North Carolina State University
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Opportunities

• Multiple tiles in a channel of an image may be similar to one
another.

• All the previous explorations on reuse, however, have been
based on a single, most straightforward pattern.

Red channel Green channel

Original Image

Redundant
data 1

Redundant
data 2

Figure 7: Illustration of similar tiles in an image in each of its channels
(only two channels are shown).
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Reuse Patterns

Reuse Pattern-1

Image 1 Image 2

Reuse 
Pattern-2

Reuse Pattern-3

Figure 8: Reuse patterns.

Jiesong Liu Computer Science Department, North Carolina State University
21 / 41



Bio Projects

Generalized Reuse: Three Views and Reordering
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Figure 9: Example of three views and their mappings. (a) image view (showing only two channels); (b) im2col
view (default); (c) memory view derived from part b (row major); (d) im2col view after a column reorder; (e)
im2col view after a row reorder.
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Workflow for Reuse Pattern Selection
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Figure 10: The workflow of analytical-empirical combined approach to
reuse pattern selection.

Jiesong Liu Computer Science Department, North Carolina State University
23 / 41



Bio Projects

Results

• The approach delivers 1.03-2.2× speedups or 1-8% accuracy
improvement over conventional reuse.
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Figure 11: End-to-end results for
different networks on STM32F4.
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Figure 12: End-to-end results for
different networks on STM32F7.
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Problem Motivation

Early stopping and multi-fidelity based models are helpful for
achieving efficiency in hyperparameter optimization (HPO)
problems.

Figure 13: Illustration of Successive Halving (SH) method on different
configurations (indicated by different colors).

Jiesong Liu Computer Science Department, North Carolina State University
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Problem Motivation

But they lack systematic treatment of uncertainty inherent in the
dynamics of the training process of iterative machine learning
applications.

Figure 14: One real SH round.

Jiesong Liu Computer Science Department, North Carolina State University
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Design

Figure 15: Work flow of UQ-guided HPO. Sweet point is determined by
calculating f ((µi , σ

2
i )

K
i=1, k), which captures the effects of keeping k top

candidates (1 ≤ k ≤ K ) for the next round, by considering the tradeoff
between the risks of discarding the best candidate and the training
budget each top candidate can get.
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Results

Figure 16: Experimental results of UQ-oblivious HPO methods and their
UQ-guided enhancements on NAS-BENCH-2.0
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Background
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Figure 17: A recursive search process of x = 58 in a three-level PGM
Learned index with ϵ = 1 .
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We aim to accelerate the learned indexes on GPUs and design a
heterogeneous model.

G-Learned index

Architecture Construction &
Hierarchical Memory Arrangement
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results

GPU
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Multidimensional Index𝒕𝒚𝒑𝒆𝟐
dataset
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Figure 18: Overview of the G-Learned index. There are four components:
architecture construction, hierarchical memory arrangement, query
execution and multidimensional index.
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G-Learned Index

• Our method can accelerate the state-of-the-art learned
indexes.

• We also achieve satisfactory improvements on range queries.
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Figure 19: Performance of different methods.
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Background

• Huge amounts of data generated at the edge with limited
computing capacity.

• Integrated heterogeneous co-processors into edge devices.

Jiesong Liu Computer Science Department, North Carolina State University
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Contribution

• Utilize the unified memory by enabling the CPU and GPU to
access memory in a suitable pattern.

• Propose a performance model combined with statistic data
and input data attributes (sub-task, pipeline).

• Develop a sub-task module to split a specified query into
several operators.

FineQuery

SQL Query

Data Volume

Serial 
Execution

Parallel 
Execution

Sub-task 
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Performance
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Result

OP1 OPnOP2

CPU GPU

Readjust

Small Large
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Figure 20: FineQuery overview.Jiesong Liu Computer Science Department, North Carolina State University
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Results

• FineQuery on the Jetson platform can reduce the latency by
56.69% compared to the query processing on the discrete
architecture.
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Figure 21: Latency on Jetson AGX Xavier.
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Background

• Techniques for Group Steiner Trees are widely used in graph
processing applications and data mining.

• Current works are based on assumptions that each node is
associated with deterministic property of interest (PoI),
ignoring the probablistic scenarios prevalent in ML labeling.

Figure 22: Examples in probablistic scenarios.
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Contribution

• Developed the new algorithm to approximate the solution.
• Devised and implemented the parallel version of pruned

landmark labeling algorithm and achieved significant speedups.
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Thanks!
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