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Adaptive Speculative Decoding for Large Language Models
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LLM Inference Optimization

e Googles infrastructure optimizations show that a 1% speedup
in inference can save millions.

® Speculative Decoding breaks the autoregressive nature of
LLMs and allows execution in parallel, by first running
inference with a smaller LLM to generate the next « tokens,
and verifying those tokens using the large LLM.

® Choosing the best speculation window length, 7, and the best
draft model to use is crucial for unlocking the potential of
speculative decoding.

Jiesong Liu Computer Science Department, North Carolina State University
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Introduce on-the-fly adaptive speculation, a drop-in solution
that adapts speculative decoding at runtime without
ahead-of-time training.
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Figure 1. Our on-the-fly adaptive speculation framework. When a prompt
arrives, our scheduler directs it to the draft model M,. During
speculation, our framework automatically adapts the right speculation
window size y. The speculation is then validated by the target model M,.
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Online window size optimization

Definition (formulating objective)

Let a4 represent the latency of generating one token by the draft
model, and b,(y) represent the latency of a verification step with
window size v. For t =1,2,---, let Acc(x¢|X<t) be the accuracy
of the speculation of a single token given the current context
Xet = {x1, -+ ,xt—1}. The window size  for the current
speculation step can be determined by optimizing the objective

— ax 1 — Acc(x¢|X<e)7 Tt
0= M T Acc(alXe)) (vaq 1 o)) (1)

We estimate Acc(x¢|X<t) as
Zj V(’Y(f)ax<tj) (2)
Zj V(V(j)7X<tj) + Z_j l(v(’Y(./)7X<t_,) < 7(./))
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Table 1: Evaluation of adaptive window size selection. SPS denotes the throughput improvement our method
achieves over the original speculative decoding. ARS denotes improvements over the default LLMs without
speculative decoding. (“-" for not-runnable cases due to memory limit)

Model Pairing Dataset A100 V100 4090

SPS ARS SPS  ARS  SPS  ARS
LLaMA 70B/7B  finance-alpaca  6.43% 2.11x - - - -
LLaMA 70B/13B  finance-alpaca  4.89%  1.90x - - - -
BLOOM 7B/560M finance-alpaca  4.28% 1.05x 7.69% 1.15x 3.70% 1.22x
BLOOM 7B/1Bl finance-alpaca  4.36% 1.04x 3.20% 115x 3.20% 1.17x
OPT 13B/125M finance-alpaca  4.82% 2.32x  3.41%  3.4x - -
Dolly 12B/3B finance-alpaca  9.11%  1.03x - - - -
LLaMA 70B/7B  humaneval 10.35% 241x - - - -
LLaMA 70B/13B  humaneval 853% 2.23x - - - -
BLOOM 7B/560M humaneval 8.14% 1.04x 251% 1.09x 3.00% 125x
BLOOM 7B/1B1  humaneval 403% 11x 357% 116x 351% 13x
OPT 13B/125M  humaneval 11.40% 229x 2.15% 3.34x - -
Dolly 12B/38 humaneval 15.20% 1.07x - - - -
LLaMA 70B/7B  gsm8k 7.13% 2.28x - - - -
LLaMA 70B/13B  gsm8k 9.66% 2.08x - - - -
BLOOM 7B/560M  gsm8k 15.03% 1x  252% 10lx 4.84% 1.18x
BLOOM 7B/1B1  gsm8k 1070% 1x  0.77% 102x 197% 1.19x
OPT 13B/125M  gsmgk 505% 2.24x 1052% 3.36x - -
Dolly 12B/38 gsmk 16.92% 1.06x - - - -
LLaMA 70B/7B  xsum 294% 173x - - - -
LLaMA 70B/13B  xsum 014%  15x - - - -
BLOOM 7B/560M  xsum 77.50% L.x  49.30% 1x  54.63% 1.x
BLOOM 7B/1BL  xsum 7091% Lx  4294% 1x  5417% 1.
OPT 13B/125M  xsum 10.64% 1.02x  7.91% 243x - -

Jiesong Liu
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Results
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Figure 2: Detailed experimental results of different adaptive methods.

Computer Science Department, North Carolina State University




Projects
@000000

@® Projects

Space Efficient TREC for Enabling Deep Learning on
Microcontrollers

Jiesong Liu Computer Science Department, North Carolina State University
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Background

® Microcontrollers are small, low-cost or energy-efficient devices.

® Demands for DNNs on microcontrollers keep growing for
reasons of energy-saving and privacy concerns.

Jiesong Liu Computer Science Department, North Carolina State University
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Figure 3: Transient redundancy elimination-based convolution (TREC)
Method (for Inference).
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Figure 4: Architecture design of TREC. "®" denotes matrix
multiplication.
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Clustering Hash

Projection Cluster ID
matrix

Centroid matrix

Result matrix

Centroid Computation

Figure 5: Kernel Reuse Technique.
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Figure 6: Two-step Stack Technique.
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Table 2: End-to-end performance and accuracy comparison.

Target(s) Convolution Methods ‘ CifarNet ZfNet ‘ SqueezeNet ‘ SqueezeNet (Bypass)

STM32F469NI | Latency (ms)-CMSIS Conv 217.32 3557.32 1639.51 1998.86
Latency (ms)-Deep reuse 154.44 814.03 — —
Latency (ms)-TREC 153.92 814.01 327.9 543.71
Speedup-TREC vs. CMSIS Conv. 1.412x 4.37x 4.98x 3.68x

STM32F746ZG | Latency (ms)-CMSIS Conv 120.62 1758.73 894.16 1152.46
Latency (ms)-Deep reuse 98.44 525.03 — —
Latency (ms)-TREC 97.79 524.3 181.49 274.2
Speedup-TREC vs. CMSIS Conv. 1.23x 3.35% 4.93x 4.20x

Both Accuracy (%)-CMSIS Conv. 782 80.1 835 85.6

Accuracy (%)-Deep reuse 732~761|725~766 | 79.8 ~ 819 80.5 ~ 83.1
Accuracy (%)-TREC 76.5 78.9 83 85.3

Computer Science Departmen

North Carolina State University
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Generalized Reuse Patterns
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Opportunities

® Multiple tiles in a channel of an image may be similar to one
another.

e All the previous explorations on reuse, however, have been
based on a single, most straightforward pattern.

Redundant
Redundant data 2
data 1 //"\\\/(‘\

ALY
/ [N \\

Original Image

Red channel Green channel

Figure 7: Illustration of similar tiles in an image in each of its channels
(only two channels are shown).
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Reuse Patterns
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Figure 8: Reuse patterns.
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Generalized Reuse: Three Views and Reordering

(b) A A s
X v [ 1 [ 12 [ [ rae [ 2 [ | e [ 32 g g | 22 g s [ 2 g
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(d) Row
reorder
image 2

image 1 | SRR = o o [ = oo

image 2 Lzl o s | Y EEPTRY

image 1

(e)

FIgU re 9: Example of three views and their mappings. (a) image view (showing only two channels); (b) im2col
view (default); (c) memory view derived from part b (row major); (d) im2col view after a column reorder; (e)
im2col view after a row reorder.
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Figure 10: The workflow of analytical-empirical combined approach to
reuse pattern selection.
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Results

® The approach delivers 1.03-2.2x speedups or 1-8% accuracy
improvement over conventional reuse.
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Figure 11: End-to-end results for Figure 12: End-to-end results for
different networks on STM32F4. different networks on STM32F7.
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UQ-Guided Hyperparameter Optimization

Jiesong Liu Computer Science Department, North Carolina State Uni
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Early stopping and multi-fidelity based models are helpful for
achieving efficiency in hyperparameter optimization (HPO)

problems.
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Figure 13: Illustration of Successive Halving (SH) method on different
configurations (indicated by different colors).
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Problem Motivation

But they lack systematic treatment of uncertainty inherent in the
dynamics of the training process of iterative machine learning
applications.

Large uncertainty exists.

Validation loss

100 125 150 175 200
Epoch

Figure 14: One real SH round.

Jiesong Liu Computer Science Department, North Carolina State University
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Figure 15: Work flow of UQ-guided HPO. Sweet point is determined by
calculating f((u;, 02) ;, k), which captures the effects of keeping k top
candidates (1 < k < K) for the next round, by considering the tradeoff
between the risks of discarding the best candidate and the training

budget each top candidate can get.
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Figure 16: Experimental results of UQ-oblivious HPO methods and their
UQ-guided enhancements on NAS-BENCH-2.0
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G-Learned Index
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Figure 17: A recursive search process of x = 58 in a three-level PGM
Learned index with e =1 .
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We aim to accelerate the learned indexes on GPUs and design a
heterogeneous model.

Architecture Construction & Query Execution
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Figure 18: Overview of the G-Learned index. There are four components:
architecture construction, hierarchical memory arrangement, query
execution and multidimensional index.
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G-Learned Index

® Qur method can accelerate the state-of-the-art learned
indexes.
® We also achieve satisfactory improvements on range queries.
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Figure 19: Performance of different methods.
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Exploring Query Processing on CPU-GPU Integrated Edge
Device

Jiesong Liu Computer Science Department, North Carolina State University
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Background

® Huge amounts of data generated at the edge with limited
computing capacity.

® |ntegrated heterogeneous co-processors into edge devices.

Jiesong Liu Computer Science Department, North Carolina State University
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Contribution

e Utilize the unified memory by enabling the CPU and GPU to
access memory in a suitable pattern.

® Propose a performance model combined with statistic data
and input data attributes (sub-task, pipeline).

® Develop a sub-task module to split a specified query into
several operators.

sQL Query

Data Volume
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Parallel
Execution

Serial
Execution

Sub-task
|
Performance
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Approximating Probabilistic Group Steiner Trees in Graphs

Jiesong Liu Computer Science Department, North Carolina State University
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Background

® Techniques for Group Steiner Trees are widely used in graph
processing applications and data mining.

® Current works are based on assumptions that each node is
associated with deterministic property of interest (Pol),
ignoring the probablistic scenarios prevalent in ML labeling.

Input a set of Pols \ .
\ .=

Database: 0.8 |Algorithm: 0.4] V)

TFinding Top-k Min-Cost Connected Trees in Databases

Database: 0.5 Algorithm: 0.9

—
Efficient and Progressive Group Steiner Tree Search

An Empirical Performance Evaluation
of Relational Keyword Search Techniques

Joel Coffman. Member, IEEE. and Allred C. Woaver. Follow. IEEE.
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Contribution

® Developed the new algorithm to approximate the solution.

® Devised and implemented the parallel version of pruned
landmark labeling algorithm and achieved significant speedups.

Jiesong Liu Computer Science Department, North Carolina State University
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